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This article presents Fourier Transform application to extract features of 
Phonocardiogram Signals into its frequency components. Data was taken from 
Physionet Dataset of Phonocardiogram which comprises of normal and 
abnormal heart condition. Raw data was preprocessed using time clipping of 2 
seconds at certain area that contains less noise. A lowpass filter was applied to 
denoise the raw signals. Experiments show the PCG of normal hearts has a 
dominant frequency of 50Hz to 150Hz, with the subdominant frequencies of 450 
Hz to 650 Hz. The subdominant frequency of the normal hearts sometimes show 
anomaly with more amplitude compared to the dominant frequency. Keywords: 
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Artikel ini membahas penggunaan Transformasi Fourier untuk menganalisis 
sinyal Fonokardiogram (Phonocardiogram) dengan mengekstraksi 
komponennya dalam domain frekuensi. Data yang digunakan berasal dari 
Dataset Physionet Phonocardiogram, yang mencakup kondisi jantung normal 
dan abnormal. Data mentah diolah dengan memotong segmen berdurasi 2 detik 
pada area yang memiliki noise minimal. Untuk mengurangi gangguan, sinyal 
mentah difilter menggunakan lowpass filter. Hasil eksperimen menunjukkan 
bahwa PCG jantung normal memiliki frekuensi dominan di kisaran 50Hz hingga 
150Hz, serta frekuensi subdominan di kisaran 450Hz hingga 650Hz. Pada 
beberapa kasus, frekuensi subdominan jantung normal menunjukkan anomali 
dengan amplitudo yang lebih tinggi dibandingkan frekuensi dominan. 
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1. INTRODUCTION 

Phonocardiogram (PCG) signals record the acoustic vibrations produced by the heart activity. They 
are used for numerous purposes in clinical, as well as research contexts. One of the main uses in the 
diagnosis and monitoring of cardiovascular diseases (CVDs). PCG analsys helps detect abnormal heart 
conditions, such as valve disorders, arrythmias, and murmurs, which then related with structural and 
functional anomalies [1], [2], [3]. 

Besides diagnostics, PCG signals contribute to continuous health monitoring and personalized care. 
Implementation in the form of wearable devices enables real-time heart sound analysis, which then can 
be used to monitor the progress of chronic conditions and effectiveness of therapies. These applications 
are supported by the integration of PCG with other sources of information like Electrocardiogram (ECG). 
They provide a comprehensive view of one’s cardiovascular health. The recent advancements in digital 
stethoscopes and data processing have also made PCG a practical tool in telemedicine and remote 
healthcare [4].  

The phonocardiogram (PCG) signal provides a rich source of features for diagnosing and analyzing 
cardiac health. These features can be broadly categorized into time-domain, frequency-domain, and time-
frequency domain characteristics. In the time domain, common features include heart sound intervals (S1 
and S2 durations), systolic and diastolic durations, and inter-beat intervals. These features are essential 
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for identifying abnormalities such as arrhythmias or valve issues [5]. Frequency-domain features, such 
as spectral energy, dominant frequency, and bandwidth, help in identifying murmur characteristics, often 
associated with turbulent blood flow caused by structural abnormalities in the heart. Time-frequency 
methods, like wavelet transform, enable the analysis of transient and non-stationary features, which are 
particularly useful for detecting subtle variations associated with murmurs and other dynamic heart 
conditions (e.g., ejection clicks or rubs) [1], [6]. 

The extraction and classification of these features are critical for automated diagnosis systems. 
Advanced techniques often combine multiple domains, such as using joint time-frequency 
representations, to enhance diagnostic accuracy. For example, machine learning models often use feature 
sets derived from these domains to classify PCG signals into normal or pathological categories. These 
features also facilitate identifying specific heart conditions, such as aortic stenosis or mitral regurgitation, 
by correlating signal characteristics with clinical presentations. Research continues to evolve, 
incorporating methods like deep learning and multi-modal data fusion (e.g., combining PCG with 
electrocardiograms) to improve diagnostic reliability and interpretability [7]. 

This PCG signal model can be analyzed using time domain analysis [2], [8], [9]. Another method 
used is frequency-domain analysis [10], [11]. Recent research on PCG analysis is combining these 
methods to have more accuracy [9], [10], [12] even using various methods of Machine Learning [6], [8], 
[9], [12]. 

 
2. METHODOLOGY  

This section discusses several methods used in PCG signal analysis, including the model of PCG 
signal in time-domain, the Fourier Transform, and S-Transform. Fourier Transform is applied to perform 
frequency analysis, while S-Transform is used to show Power Spectrum. 

 
2.1. Model of PCG signal 

PCG signal model is shown in using two signals with low and different frequencies, with noise 
added as shown in (1) [13]. 

  
 𝑃𝐶𝐺(𝑡) = 𝐴ଵ sin൫𝜔ଵ(𝑡 − 𝑡ଵ)൯ + 𝐴ଶ sin൫𝜔ଶ(𝑡 − 𝑡ଶ)൯ + 𝑛𝑜𝑖𝑠𝑒(𝑡) (1) 
 

This equation can be displayed Figure 1. 

 

Figure 1. Model of Phonocardiogram Signal 

 

2.2. Frequency Feature of PCG Signal 
A PCG signal consists of five main frequency features, spectral roll off, median frequency, spectral 

centroid, dominant frequency, and spectral flux [14]. These features will then be used in further 
processing units [7], [14], [15] due to the properties shown in Table 1. 
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Table 1. Frequency properties of PCG Signals and their Significance.[14]. 

No. Features 
Maximum Percentage of (%) 

Accuracy Sensitivity Specificity PPV NPV 
1 Spectral roll-off 80.6 80.6 80.6 80.6 80.6 
2 Median 

Frequency 
87.4 87.7 90.0 87.2 87.6 

3 Spectral Centroid 73.4 66.7 80.0 77.0 70.6 
4 Dominant 

Frequency 
73.6 66.5 80.6 77.4 70.7 

5 Spectral Flux 71.8 65.9 77.7 74.7 69.5 
 

2.3. Fourier Transform 
The Discrete Fourier Transform (DFT) is a technique used to convert a finite sequence of equally 

spaced samples from the time domain into the frequency domain. It decomposes a signal into its 
constituent frequencies, which is critical in signal processing applications such as audio compression, 
wireless communications, and image processing. The DFT essentially projects the input signal onto a set 
of sinusoidal basis functions, enabling the analysis and manipulation of signal frequency content. Its 
computational efficiency was greatly enhanced by the development of the Fast Fourier Transform (FFT), 
which significantly reduces the complexity of computing the DFT [16], [17]. 

The DFT operates on finite-length signals, assuming periodicity within the analyzed sample, and 
provides a discrete representation of frequency components. This process makes it invaluable for digital 
signal processing tasks, including noise filtering, spectral analysis, and data compression. For example, 
in MP3 audio compression, the DFT identifies dominant frequency components in small blocks of data, 
enabling the efficient encoding of sound while maintaining audio fidelity. Additionally, the DFT is widely 
applied in scientific domains such as spectroscopy and MRI, where frequency-domain representations 
yield insights into underlying phenomena. Fourier transform is applied to breakdown signals to 
Frequencies components [16], [17]. To perform frequency analysis, first the PCG signals are calculated 
using Fourier series as shown in (2) as follows: 
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Fast Fourier Transform is applied to PCG signals as shown in Figure 2: 

 
Figure 2. The application of Fourier Transform of a signal. 
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2.4. Preprocessing 
PCG signals are extracted between time frame to denoised by bandpass filter to extract the frequency 

components of 20 Hz to 200 Hz [18]. The next step is applying wavelet transform to attenuate high 
frequency [2], [19] and followed by detect high-energy S1 and S2 [20]. The final stage of preprocessing 
is normalization to bring all signals to the same level [21].  

 
3. RESULT AND DISCUSSION 

There are two types of labels used in this work, Normal and Abnormal. Ten samples of each label are 
randomly taken from Physionet Data. These samples are then pre-processed 

 
Table 2. Random samples from PCG dataset. 

No. Idx Sample number Label No. Idx Sample number Label 

1 758 85161 Abnormal 11 722 85099 Normal 

2 373 50826 Abnormal 12 91 49974 Normal 

3 601 84853 Abnormal 13 235 50311 Normal 

4 127 50056 Abnormal 14 99 49990 Normal 

5 379 57706 Abnormal 15 674 85000 Normal 

6 232 50300 Abnormal 16 373 50094 Normal 

7 451 68698 Abnormal 17 639 84933 Normal 

8 8 29378 Abnormal 18 577 84798 Normal 

9 28 49562 Abnormal 19 103 49998 Normal 

10 10 33151 Abnormal 20 431 68470 Normal 

 
The PCG signal of sample number 674 in time domain is shown in 

 
Figure 3.  

 

Figure 3. Raw PCG signal of sample number 674 in time domain. 

In the frequency domain, this signal is shown in Figure 4. 
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Figure 4. Raw PCG signal of sample number 674 in frequency domain. 

Figure 3 and Figure 4 show that the raw PCG signal is noisy and thus, is not ready for further 
processings. In the time domain, some areas show spikes that will decimate others when normalized. This 
causes the distribution of frequency to be indistinguishable. The next step is to determine the Region of 
Interest RoI to address the problem. The result of this step is shown in Figure 5 while the frequency 
domain of the RoI is shown in Figure 6. 

 
Figure 5. PCG signal of sample number 674 RoI in time domain. 

 
Figure 6. PCG signal of sample number 674 RoI in frequency domain. 

Compared to the raw signal, the RoI signal shows more distinguishable features. In time domain, S1 
and S2 are more obvious than the raw signal, while in the frequency domain, the frequency of 0 to 100 
Hz is dominant compared to higher frequencies. There is also a dominant frequency range between 600 
Hz to 700 Hz as shown in Figure 7.  

On the other hand, PCG signal of normal heart comprises of less noise in time domain, while in the 
frequency domain, the dominant frequencies remain the same with more dishtinguishable compared to 
the rest, as shown in and Figure 8. 



 
90   Karel Octavianus Bachri / Jurnal Elektro Vol.17 No.2 Oktober 2024 

 

  
Figure 7. PCG signal of sample number 674 RoI in frequency domain. 

 

 
Figure 8. Raw PCG signal of sample number 373 in frequency domain. 

 
Clipping the signal resulting distinguish S1 and S2 with considerable noise, as shown in Figure 9. In 

frequency domain, the frequency 0 Hz to 100 Hz is still dominant, while the frequency 600 Hz to 700 Hz 
is slightly more than the remaining frequencies, as shown in Figure 10. 

 
 

 
Figure 9. RoI of PCG signal of sample number 373 in time domain. 
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Figure 10. RoI of PCG signal of sample number 373 in frequency domain. 

 
Applying a low pass filter with the cut-off frequency of 150 Hz and gradient 0.85 does not make 

significant change in time domain. In the frequency domain however, the frequency component of the 
higher frequencies attenuated significantly as shown in Figure 11. 

 

 
Figure 11. Normal and filtered PCG signal comparison of sample number 373 in frequency domain. 

 
4. CONCLUSION 

This paper performs frequency analysis of random samples of PCG signal taken from Physionet 
dataset. Samples comprises of random ten samples each of normal and abnormal heart conditions. Sample 
number 674 is a normal heart with the feature of more order in heartbeat and the dominant frequency 
between 50 Hz to 150 Hz. In some samples it is found that the signal with subdominant frequencies have 
higher amplitude than the dominant frequencies itself.  

The signals of normal heart conditions sometimes have more frequencies spread across the frequency 
domain. It is found that subdominant frequencies have features, which in future can be explored to find 
more correlations between some tima and frequency features of the PCG signals [19], [22], [23]. 
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