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This work investigates the impact of noise on model performance 
by training a neural network on a digit dataset with varying Signal-
to-Noise Ratios (SNR) to assess its resilience and generalization 
ability. The experimental setup involved training the model on 
datasets with noise levels ranging from clean images to highly 
distorted ones (SNR 5%–25%), analyzing accuracy, mini-batch 
loss, and training time. Results indicate that while the model 
achieves high accuracy (96.88%) at mild noise levels (SNR 5%), 
performance declines significantly at higher noise levels, with 
accuracy dropping to 78.91% at SNR 25%. The analysis of mini-
batch loss and training time reveals that noise slows convergence 
and increases computational complexity. The confusion matrix 
further confirms that while the model effectively distinguishes 
between classes, noise-induced misclassifications become more 
frequent at lower SNRs. These findings emphasize the importance 
of noise reduction techniques and data preprocessing to improve 
model robustness in real-world applications. 
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Makalah ini bertujuan menyelidiki bagaimana jaringan saraf yang 
dilatih pada dataset digit dengan berbagai tingkat noise dapat 
mengenali gambar, dengan tujuan mengevaluasi ketahanan dan 
kemampuan generalisasinya. Eksperimen dilakukan dengan 
melatih model pada dataset dengan Signal-to-Noise Ratio (SNR) 
yang bervariasi, mulai dari gambar normal hingga kondisi dengan 
berbagai Tingkat noise (SNR 5%–25%), kemudian menganalisis 
akurasi, mini-batch losses, dan waktu pelatihan. Hasil 
menunjukkan bahwa model mencapai akurasi tinggi (96,88%) pada 
SNR 5%, tetapi kinerjanya menurun seiring meningkatnya noise, 
dengan akurasi turun menjadi 78,91% pada SNR 25%. Analisis 
juga menunjukkan bahwa noise memperlambat konvergensi dan 
meningkatkan kompleksitas komputasi, yang terlihat dari waktu 
pelatihan yang lebih lama dan kehilangan yang lebih tinggi pada 
SNR rendah. Matriks kebingungan mengonfirmasi bahwa meskipun 
model dapat mengklasifikasikan sebagian besar sampel dengan 
baik, misklasifikasi lebih sering terjadi pada tingkat noise yang 
lebih tinggi. Temuan ini menekankan pentingnya teknik reduksi 
noise dan prapemrosesan data untuk meningkatkan ketahanan 
model dalam aplikasi dunia nyata. 
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1. INTRODUCTION 

Humans can recognize images even when they are noisy, incomplete, or distorted. This skill is a result 
of the brain’s advanced pattern recognition system, which allows us to identify objects, faces, and scenes 
even under challenging visual conditions. Unlike computers that rely heavily on precise input, the human 
brain can make sense of fragmented or obscured images by filling in missing details and filtering out 
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irrelevant noise. This capability is essential for daily life, enabling us to interpret blurry photographs, read 
partially covered text, or recognize familiar objects in low-light environments [1].  

Another study explored how training deep neural networks (DNNs) with noisy images can enhance 
their alignment with human visual processing. Researchers found that DNNs trained on noisy data not 
only improved in object recognition tasks under noisy conditions but also exhibited neural activation 
patterns more closely resembling those observed in human brains. This suggests that incorporating noise 
during training can make artificial vision systems more robust and human-like in their processing [2]. 

Additionally, a study investigated the spatiotemporal neural dynamics of object recognition under 
noisy and ambiguous conditions. Using advanced neuroimaging techniques, researchers observed that the 
human brain employs specific temporal patterns to process and recognize objects, even when visual 
information is degraded. These findings provide valuable insights into the temporal aspects of how our 
visual system maintains recognition performance amidst challenging conditions [3], [4]. 

In real-world scenarios, recognizing images from noisy or incomplete data is crucial for various 
applications, including medical imaging, autonomous driving, and security systems. In medical 
diagnostics, for example, doctors often analyze scans that may contain noise due to limitations in imaging 
technology or patient movement. Similarly, self-driving cars rely on cameras and sensors to navigate their 
environment, even in poor weather conditions where images may be blurry or occluded. Security and 
surveillance systems must also accurately identify individuals or objects despite low-resolution footage 
or obstructions. The ability to process and recognize images under such conditions is essential for 
ensuring safety, accuracy, and reliability in these critical fields [5], [6]. 

This research aims to investigate the performance of a network trained on a noisy dataset, evaluating 
how well it can recognize images despite distortions. By analyzing how deep learning models handle 
degraded visual information, researchers can develop more robust and adaptive artificial intelligence 
systems. The study will explore different noise levels and types to assess the model's resilience and 
generalization ability. Understanding the network's response to noise can help improve its architecture 
and training methods, ultimately leading to enhanced real-world applications where image recognition 
under imperfect conditions is necessary. 

Research on incomplete data has been conducted in several areas. In database systems, the models, 
the type, the causes, and the solution regarding such a problem have been investigated and solved [7]. In 
the area of computation and Big Data, Bayesian inference has been used to perform real-world learning 
tasks, which involve large dimensions of data using statistical methods [8]. In the cyber security area, 
Artificial Intelligence has been developed for several scenarios [2], [9], [10].  

 
2. LITERATURE REVIEW 

2.1 Deep Neural Network 
Deep Neural Networks (DNNs) have become a cornerstone in modern artificial intelligence (AI), 

enabling advancements in computer vision, natural language processing, and various other domains. The 
proliferation of DNNs has been driven by increased computational power, large datasets, and improved 
training algorithms. This literature review provides an overview of key research studies, methodologies, 
and applications of DNNs. 

DNNs are a class of artificial neural networks (ANNs) that consist of multiple hidden layers between 
the input and output layers. Each layer is composed of neurons that perform weighted summation and 
activation functions to learn representations of data. The development of deep learning frameworks such 
as TensorFlow and PyTorch has facilitated DNN implementation. 

Training DNNs involves optimizing weights using backpropagation and stochastic gradient descent 
(SGD). Various optimizers, such as Adam, RMSprop, and AdaGrad, have been proposed to improve 
convergence. Batch normalization, dropout, and data augmentation are common regularization 
techniques that mitigate overfitting. Dropout is also introduced as effective regularization method to 
reduce underfitting [11], while the training speed and stability is improved by applying batch 
normalization [12].  

2.2 Additive White Gaussian Noise (AWGN) 

Additive White Gaussian Noise (AWGN) is a fundamental concept in signal processing and 
communication systems. It models the random noise that affects transmitted signals in various channels, 
serving as a standard benchmark for evaluating the performance of communication systems. This 
literature review explores key studies on AWGN, its mathematical modelling, impact on system 
performance, and mitigation techniques [13]. 

AWGN is characterized by its additive nature, Gaussian amplitude distribution, and constant power 
spectral density over all frequencies. Mathematically, it is represented as 𝑦ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൅ 𝑛ሺ𝑡ሻ, where 𝑥ሺ𝑡ሻ 
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the transmitted signal, 𝑛ሺ𝑡ሻ is the noise component, and 𝑦ሺ𝑡ሻ is the received signal. The noise 𝑛ሺ𝑡ሻ  
follows a normal distribution 𝑁ሺ0, 𝜎ଶሻ, where 𝜎ଶ represents the noise variance. 

 
3. METHODOLOGY 

This work is conducted in several steps, data collection, preprocessing, data splitting, network 
building, training, and testing. This section discusses how each step is carried out. 

 
3.1 Data collection 

Data is collected from MNIST Digit Dataset [14]. Each sample is a grayscale image of 28x28 and are 
organized by folders. Data comprises single digits as shown in Table 1, while the examples are shown in 
Figure 1. 

 
Table 1. Dataset composition 

No. Digit Folder #Samples Nomor Files 
1 1 “1” 1000 1 – 1000 
2 2 “2” 1000 1001 – 2000 
3 3 “3” 1000 2001 – 3000 
4 4 “4” 1000 3001 – 4000 
5 5 “5” 1000 4001 – 5000 
6 6 “6” 1000 5001 – 6000 
7 7 “7” 1000 6001 – 7000 
8 8 “8” 1000 7001 – 8000 
9 9 “9” 1000 8001 – 9000 

10 0 “0” 1000 9001 – 10000 
 
 

 
Figure 1. Samples of dataset. 

 
3.2 Data preprocessing 

Data is preprocessed by adding Additive White Gaussian Noise (AWGN), which satisfies normal 
distribution, as shown in Figure 2. X-axis indicates the variable distribution, while y-axis indicates the 
probability of each variable. The value x = 0 indicates the mean of the distribution. 

 

 
Figure 2. Gaussian distribution. 
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3.3 Data splitting 
Data is split into train data and validation data with the proportion of 75% and 25% respectively. 

Given a total of 10,000 samples (10 categories × 1,000 samples each), the training set will contain 7,500 
samples, and the test set will contain 2,500 samples. This split ensures that the model learns from enough 
data while reserving a meaningful portion for evaluation. The training set is used to teach model patterns 
and relationships within the data, while the test set serves as an unseen dataset to assess the model’s 
performance, helping to identify potential overfitting or underfitting issues. 

To maintain a balanced distribution of categories in both sets, stratified sampling is recommended. 
Stratified sampling ensures that each category maintains the same proportion in the training and test sets, 
preventing any imbalance that could bias the model. Since each category has 1,000 samples, a 75 – 25 
split results in 750 training samples and 250 test samples per category. 

By following this structured approach to data splitting, a robust foundation for model training and 
evaluation can be created. The test set remains independent, allowing for a reliable assessment of the 
model’s generalization ability. This methodology supports fair comparisons between different models 
and hyperparameter tuning, ultimately leading to improved model performance and real-world 
applicability [15], [16]. 

 
3.4 Network building 

Table 2. Network architecture 

Layer Name Type Size Learning 
1 imageinput Image Input 28x28x1 - 
2 conv_1 Convolution 28x28x8 Weights 3x3x1x8 

Bias 1x1x8 
3 batchnorm_1 Batch Normalization 28x28x8 Offset 1x1x8 

Scale 1x1x8 
4 relu_1 ReLU 28x28x8 - 
5 maxpool_1 Max Pooling 14x14x8 - 
6 conv_2 Convolution 14x14x16 Weights 3x3x8x16 

Bias 1x1x16 
7 batchnorm_2 Batch Normalization 14x14x16 Offset 1x1x16 

Scale 1x1x16 
8 relu_2 ReLU 14x14x16 - 
9 maxpool_2 Max Pooling 7x7x16 - 
10 conv_3 Convolution 7x7x32 Weights 3x3x16x32 

Bias 1x1x32 
11 batchnorm_3 Batch Normalization 7x7x32 Offset 1x1x32 

Scale 1x1x32 
12 relu_3 ReLU 7x7x32 - 
13 fc Fully Connected 1x1x10 Weights 10x1568 

Bias 10x1 
14 softmax Softmax 1x1x10 - 
15 classoutput Classification Output - - 

4. RESULT AND DISCUSSION 
This section discusses the results and findings of this work. The results covers the modified dataset, 

network building result and  
 

4.1 Adding noise to the dataset 
Noise is added to the dataset as shown in Figure 1 and the result of this process is shown in Figure 3. 

 
a b c d e f g 

 
Figure 3. Dataset with noise of various ratios added. A. normal image, b. 5% noise added, c. 10% noise 

added, d. 15% noise added, e. 20% noise added, f. 25% noise added, g. 30% noise added. 
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Figure 3. a. shows a sample of the original data, adding noise with the ratio of 5%, 10%, 15%, 20%, 
25%, and 30% produce a dataset as shown in Figure 3. B., Figure 3. C., Figure 3. D., Figure 3. E., Figure 
3. F., and Figure 3. G. respectively.  

 
4.2 Network building 

 
The designed network is shown in Figure 4. The network is divided into two main parts, feature-

extraction and classification. The feature-extraction layers are basically convolutional layers. Features 
obtained from these layers are then processed in the classification layers, which is fully connected layers, 
activated by softmax, and classification layer. 

 

 

Figure 4. Network result 

This deep network design follows a typical Convolutional Neural Network (CNN) architecture 
commonly employed for image classification tasks. The architecture exhibits a sequential arrangement 
of layers, starting with an input layer (`imageinput`) that receives the image.  The core of the network 
comprises three convolutional blocks (`conv_1`, `conv_2`, `conv_3`), each consisting of a convolutional 
layer (`convolution2dL`) for feature extraction, batch normalization (`batchNormalization`) for improved 
training stability, a ReLU activation (`reluLayer`) for introducing non-linearity, and max pooling 
(`maxPooling2d`) for spatial dimension reduction. 

Following the convolutional blocks, a fully connected layer (`fullyConnected`) integrates the learned 
features, and a softmax layer (`softmaxLayer`) generates probabilities for each class. Finally, the 
classification output layer (`classificationL`) provides the predicted class label. While the diagram 
provides a basic overview, several details remain unclear, including the specific kernel sizes, strides, 
padding, and number of filters in each layer. These parameters significantly influence the network's 
capacity and performance. 

Further analysis could delve into regularization techniques, activation functions, loss functions, and 
optimizers used during training. The suitability of this architecture depends on factors such as dataset 
complexity, size, and available computational resources. Potential improvements could involve 
hyperparameter tuning, data augmentation, transfer learning, and exploration of more advanced 
architectures. Visualizing feature maps and conducting ablation studies can provide valuable insights into 
the network's learning process and the impact of individual components. Overall, this CNN architecture 
represents a solid foundation for image classification, with opportunities for optimization and refinement 
based on specific task requirements and data characteristics. 
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4.3 Network training 
Training progress of normal dataset is shown in Table 3. 
 

Table 3. training results using normal datasets. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 2 7.03 2.8750 
1 50 11 88.28 0.4952 
2 100 20 94.53 0.2032 
3 150 29 99.22 0.0726 
4 200 37 99.22 0.0697 
4 232 43 100.00 0.0563 

 
Table 3 shows the training progress of a deep neural network, showcasing a clear trend of 

improvement across epochs. Initially, at epoch 1, iteration 1, the model exhibits low accuracy (7.03%) 
and high loss (2.8750), indicating a nascent stage of learning. However, as training progresses, we observe 
a significant increase in accuracy and a corresponding decrease in loss. By epoch 4, iteration 232, the 
model achieves perfect accuracy (100.00%) with a minimal loss (0.0563), suggesting successful 
convergence and effective learning from the clean image inputs. This demonstrates the network's ability 
to extract relevant features and patterns from the data, leading to a highly accurate predictive model. 

Table 4. training result using normal dataset 5%. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 3 7.81 2.6049 
1 50 13 75.78 0.7522 
2 100 23 85.16 0.4463 
3 150 32 92.19 0.2958 
3 200 41 93.75 0.2382 
4 250 47 94.53 0.1849 
4 296 53 96.88 0.1605 

 
Table 4 shows the training process of a deep neural network on noisy image inputs with a Signal-to-

Noise Ratio (SNR) of 0.05.  The initial epoch shows a low accuracy of 7.81% and a high loss of 2.6049, 
indicating the challenge posed by the noisy data. However, as the training progresses through iterations 
and epochs, a consistent improvement is observed. The accuracy steadily increases, reaching 96.88% by 
epoch 4, iteration 296, while the loss correspondingly decreases to 0.1605. This demonstrates the 
network's ability to learn and extract meaningful features even from slightly noisy images, highlighting 
its robustness to noise and the effectiveness of the training process in mitigating the impact of low SNR. 

Table 5. training results using a noisy dataset with SNR 10%. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 1 3.91 2.8793 
1 50 8 57.81 1.1273 
2 100 14 82.81 0.5344 
3 150 21 82.03 0.4360 
3 200 30 89.84 0.4168 
4 250 38 92.97 0.2902 
4 296 46 92.97 0.2524 

 
Table 5 shows the training results of a machine learning model on a noisy dataset with an SNR of 

10%, showing the progression of mini-batch accuracy, loss, and time elapsed across iterations and epochs. 
Initially, the model starts with a low accuracy of 3.91% and a high loss of 2.8793, but it quickly improves, 
reaching 57.81% accuracy by iteration 50 and 82.81% by iteration 100. As training progresses, the 
accuracy continues to rise, stabilizing around 92.97% by iteration 296, while the loss steadily decreases 
to 0.2524, indicating effective learning. The elapsed time increases linearly, reaching 46 seconds at the 
final recorded iteration, suggesting efficient computation. The model exhibits rapid learning in the early 
stages, followed by gradual improvement, with diminishing returns beyond Epoch 3, implying potential 
convergence. 
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Table 6. training results using a noisy dataset with SNR 15%. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 1 11.72 2.7565 
1 50 9 54.69 1.3975 
2 100 18 70.31 0.7903 
3 150 25 85.16 0.5392 
3 200 33 88.28 0.3715 
4 250 42 90.63 0.3224 
4 296 49 91.47 0.2839 

 
Table 6 shows the training results of a machine learning model on a noisy dataset with an SNR of 

15%, tracking the mini-batch accuracy, loss, and time elapsed over multiple iterations and epochs. 
Initially, the model starts with an accuracy of 11.72% and a high loss of 2.7565 at iteration 1, but it rapidly 
improves to 54.69% accuracy and a reduced loss of 1.3975 by iteration 50. As training progresses, 
accuracy continues to rise, reaching 70.31% at iteration 100 and 85.16% at iteration 150, while the loss 
steadily decreases. By iteration 296 (Epoch 4), accuracy peaks at 91.47% with a final mini-batch loss of 
0.2839, indicating strong learning performance. The increasing time elapsed follows a stable trend, 
reaching 49 seconds at the last iteration. Compared to the SNR 10% scenario, the model achieves higher 
initial accuracy and slightly faster convergence, suggesting that a cleaner dataset (higher SNR) enhances 
learning efficiency and performance. 

 
Table 7. Training results using a noisy dataset with SNR 20%. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 1 11.72 2.8399 
1 50 8 46.09 1.5321 
2 100 16 75.78 0.8322 
3 150 26 81.25 0.6613 
3 200 34 82.03 0.6252 
4 250 42 85.16 0.4701 
4 296 50 85.16 0.4198 

 
Table 7 shows the training results of a machine learning model on a noisy dataset with an SNR of 

20%, tracking mini-batch accuracy, loss, and elapsed time across iterations and epochs. The model starts 
with an accuracy of 11.72% and a high loss of 2.8399 at iteration 1 but quickly improves, reaching 46.09% 
accuracy and a reduced loss of 1.5321 by iteration 50. As training progresses, accuracy continues to 
increase, reaching 75.78% at iteration 100 and 81.25% at iteration 150, with a corresponding decline in 
loss. By iteration 296 (Epoch 4), accuracy stabilizes at 85.16%, while the loss drops to 0.4198, indicating 
learning convergence. Compared to SNR 10% and 15%, the model initially learns more slowly but 
achieves a stable performance around Epoch 4. The slightly lower final accuracy suggests that while a 
cleaner dataset (higher SNR) aids learning, performance gains diminish beyond a certain noise threshold, 
indicating that other factors may limit further improvement. 

 
Table 8. Training results using a noisy dataset with SNR 25%. 

Epoch Iteration Time Elapsed (s) Mini-batch Accuracy (%) Mini-batch Loss 
1 1 0 7.03 2.8124 
1 50 6 50.00 1.4524 
2 100 14 71.09 0.8211 
3 150 22 64.84 0.9639 
3 200 31 73.44 0.7780 
4 250 40 76.56 0.6469 
4 296 47 78.91 0.5817 

 
Table 8 shows the training results of a machine learning model on a noisy dataset with an SNR of 

25%, tracking mini-batch accuracy, loss, and elapsed time over iterations and epochs. The model starts 
with a low accuracy of 7.03% and a high loss of 2.8124 at iteration 1 but quickly improves to 50.00% 
accuracy and a reduced loss of 1.4524 by iteration 50. As training progresses, accuracy increases to 
71.09% at iteration 100 and fluctuates slightly before reaching 78.91% at iteration 296, with loss steadily 
decreasing to 0.5817. Compared to lower SNR datasets, the model's final accuracy is lower, suggesting 
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that higher noise levels hinder learning efficiency. While the model still improves over time, the slower 
convergence and lower final accuracy indicate that excessive noise in the dataset negatively impacts 
performance despite continued training. 

 

 
Figure 5. Accuracy vs SNR for every iteration 

 
Figure 5 illustrates the relationship between the Signal-to-Noise Ratio (SNR) and model accuracy at 

different training iterations (1st, 50th, 100th, 150th, and 200th). As SNR increases, accuracy consistently 
improves across all iterations, indicating that lower noise levels facilitate better learning. The trend lines 
for later iterations (100th, 150th, and 200th) show higher accuracy compared to earlier ones, 
demonstrating that longer training helps the model achieve better performance. However, the accuracy 
drop at lower SNRs is more pronounced, especially in the 50th iteration, where performance declines 
sharply, suggesting that noisy data significantly hinders early learning. The 1st iteration remains 
consistently low across all SNR values, emphasizing that the model starts with minimal knowledge. The 
overall trend suggests that while training can mitigate the impact of noise to some extent, excessive noise 
still negatively affects final accuracy, highlighting the importance of dataset quality in model 
performance. 
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Figure 6. Mini-batch Losses vs SNR for every iteration. 

 
Figure 6 illustrates the relationship between Signal-to-Noise Ratio (SNR) and mini-batch loss across 

different training iterations (1st, 50th, 100th, 150th, and 200th). As SNR increases, mini-batch loss 
generally decreases, indicating improved learning performance with lower noise levels. The 1st iteration 
maintains the highest loss across all SNR values, reflecting the model’s initial lack of training. The 50th 
iteration shows a significant decrease in loss as SNR increases, but it remains relatively high compared 
to later iterations, suggesting that early training is more affected by noise. The 100th, 150th, and 200th 
iterations exhibit consistently lower losses, with the 200th iteration achieving the lowest values, 
indicating steady convergence. The overall trend highlights that while training can reduce loss over time, 
datasets with lower SNR values (higher noise) still result in higher losses, emphasizing the challenge of 
learning in noisy environments. 
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Figure 7. Elapsed Times vs SNR 

Figure 7 illustrates the relationship between Signal-to-Noise Ratio (SNR) and elapsed training time 
across different training iterations (1st, 50th, 100th, 150th, and 200th). The general trend shows that as 
SNR increases, the elapsed time for each iteration decreases, indicating that training is more 
computationally demanding when the dataset contains more noise (lower SNR). The 1st iteration 
consistently exhibits the lowest elapsed time, as minimal computation occurs in the initial stage. 
However, as training progresses, the elapsed time increases, with the 200th iteration taking the longest. 
This suggests that as the model undergoes more updates, the computational burden grows due to more 
complex weight adjustments and gradient calculations. The trend also indicates that noisy data requires 
additional processing time to refine model parameters, making training more time-consuming in low-
SNR environments. 
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Figure 8. Confusion matrix of the normal dataset 

The confusion matrix illustrates the classification performance of a model across ten classes. The 
diagonal elements represent correctly classified instances, with most values being close to 250, indicating 
high accuracy. Misclassifications are sparse, appearing as off-diagonal elements, suggesting that the 
model performs well but has minor errors in some classes. The most significant misclassifications occur 
in a few classes where predictions deviate slightly from the true class, though the overall distribution 
remains strong. This suggests that the model has learned meaningful features for distinguishing between 
classes, but there is still room for improvement in reducing misclassifications. 

 
 

5. CONCLUSION AND FUTURE WORKS 

The training results across different datasets, varying in noise levels (SNR), provide key insights into 
the deep neural network's learning behavior. When trained on the normal dataset, the model achieved 
rapid and high accuracy, reaching 100% with a minimal loss, demonstrating its ability to effectively learn 
patterns from clean images. However, as noise levels increased (lower SNR), the model's performance 
gradually declined, requiring more iterations to achieve convergence. At SNR 5%, the model still reached 
high accuracy (96.88%), indicating strong resilience to mild noise. At SNR 10% and 15%, the accuracy 
plateaued slightly lower (92.97% and 91.47%, respectively), suggesting that noise impacted the model's 
ability to extract meaningful features, as shown in Table 3 to Table 6. 

When trained on datasets with even higher noise levels (SNR 20% and 25%), the model faced more 
difficulties in achieving high accuracy. At SNR 25%, accuracy stagnated at 78.91%, showing that 
excessive noise significantly hinders learning. While loss still decreased over iterations, the diminishing 
accuracy gains suggest that beyond a certain noise threshold, the model struggles to distinguish relevant 
features from noise, leading to suboptimal performance, as shown in Table 7 and Table 8. 

The experimental results demonstrate the impact of Signal-to-Noise Ratio (SNR) on the performance 
of a deep neural network. As observed in Figure 5 to Figure 7, higher SNR values lead to improved 
accuracy, lower mini-batch losses, and reduced training times. This confirms that cleaner datasets 
facilitate more efficient learning, whereas higher noise levels hinder early training and slow down 
convergence. The confusion matrix Figure 8 further supports these findings, showing high classification 
accuracy with only minor misclassifications, suggesting that the model has effectively learned 
distinguishing features across the ten classes. 
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However, the results also highlight that excessive noise negatively impacts both accuracy and training 
efficiency. While the model demonstrates resilience to moderate noise, performance gains diminish at 
higher noise levels (lower SNR), where misclassifications become more frequent. This emphasizes the 
importance of high-quality data and noise reduction techniques to enhance model performance. Overall, 
the study reinforces that while deep learning models can adapt to noisy environments, optimal results are 
achieved when trained on cleaner datasets with minimal noise interference. 

Overall, the results indicate that while the neural network is robust to a certain degree of noise, its 
learning efficiency and final accuracy degrade as noise increases. This highlights the importance of data 
preprocessing techniques such as noise reduction and augmentation to improve model generalization in 
noisy environments. 

Building upon the findings of this study, there are several promising directions for future research to 
further investigate and enhance the performance of deep neural networks when dealing with noisy image 
data. One important avenue is the application of noise prefiltering techniques. Before feeding the noisy 
images into the neural network, various denoising filters—such as Gaussian blur, median filters, or 
wavelet-based methods—could be applied. These preprocessing steps may reduce the impact of noise, 
particularly in datasets with lower signal-to-noise ratios (SNR), and improve classification accuracy. 
Comparing filtered versus unfiltered inputs across multiple SNR levels would help quantify the benefit 
of such approaches. 

Another key area for exploration is the study of different types of noise. While the current work likely 
focuses on a single or limited set of noise models (e.g., Gaussian noise), real-world scenarios involve a 
diverse range of noise types including salt-and-pepper noise, speckle noise, Poisson noise, and sensor-
specific artifacts. By evaluating the model’s performance across these varied conditions, researchers can 
better understand its robustness and identify weaknesses that could be addressed through architectural or 
training improvements. 

In addition to these extensions, a valuable direction would be to develop adaptive or noise-aware 
neural network models. These models could include mechanisms such as attention layers that 
dynamically adjust to the noise level in the input, or customized loss functions that penalize 
misclassifications more severely in noisier examples. Such approaches could make the model more 
resilient and better suited for deployment in unpredictable or low-quality imaging environments. 

Furthermore, it would be beneficial to evaluate the findings across different datasets. Applying the 
same methodology to datasets like EMNIST, Fashion-MNIST, or CIFAR-10 would test the 
generalizability of the observed performance trends. This cross-dataset analysis would offer a broader 
understanding of how noise affects model performance in tasks of varying complexity. 

Finally, future work could also involve simulating real-time or streaming data conditions, where noise 
levels might vary dynamically. Testing model robustness in such scenarios would provide insights into 
its practicality for real-world applications, such as OCR systems or mobile imaging, where noise can be 
unpredictable and transient. 
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