Jurnal **Praktik Keinsinvuran** Vol.2 No.4 (September 2025)

journal homepage: http://ejournal.atmajaya.ac.id/index.php/jpk

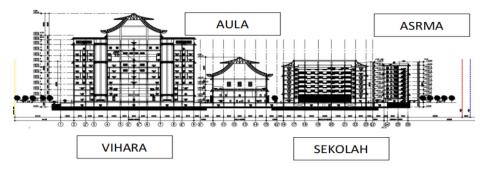
Kegagalan Beton Akibat Campuran Air Berlebih

Dodi Mardotillah*, Jimmy Chandra

Program Studi Program Profesi Insinyur, Fakultas Biosains, Teknologi, dan Inovasi, Universitas Katolik Indonesia Atma Jaya, Jalan Jenderal Sudirman 51 Jakarta 12930

Article Info	Abstract
Article history:	The study examines structural cracks in a multi-story concrete
Received July 4, 2025	building caused by excessive water in the mix. Using visual inspection., UPV testing, and core drilling, it was found that high water-to-cement ratios reduced concrete strengh, with actual values
Accepted August 8, 2025	failing to meet design targets (fc' 30 and 35 MPa). The issue was worsened by additional on-site water added during casting. The results
Keywords: Concrete crakcs, excess water, compressive strength, UPV, core test	higlight the need for strict control over concrete mix design.
Info Artikel	Abstrak
Histori Artikel:	Studi kasus ini mengkaji keretakan struktur pada bangunan beton
Diserahkan: 4 Juli 2025	bertingkat akibat kelebihan air dalam campuran beton. Melalui pengamatan visual, uji UPV, dan <i>core drill</i> , ditemukan bahwa tingginya rasio air terhadap semen menyebabkan mutu beton aktual tidak
Diterima: 8 Agustus 2025 Kata Kunci: Retak beton, kelebihan air, kuat tekan,	mencapai target rencana (fc 30 dan 35 MPa). Penambahan air saat — pengecoran dilapangan memperburuk kualitas beton. Hasil ini menegaskan pentingnya pengedalian mutu campuran beton.

1. PENDAHULUAN


Pembangunan gedung bertingkat atau infrastuktur yang menggunakan material beton harus diperhatikan kualitas dari bahan atau campuran yang akan digunakan, karena beton rawan terhadap retak, munculnya rongga, agregat kasar yang terpisah dari campuran beton atau disebut segregasi dan banyaknya air yang muncul pada permukaan beton atau disebut bleeding, maka dari itu perlu penanganan untuk perbaikan.

Pada studi kasus proyek ini berlokasi di kawasan perumahan, pemilik proyek adalah yayasan, terdiri dari 4 masa bangunan, yaitu tempat ibadah, aula, sekolah dan asrama. Masing-masing terdiri dari 13 lapis untuk tempat ibadah, 5 lapis aula, 10 lapis sekolah, 11 lapis untuk asrama.

Tahap pembangunan direncanakan beberapa tahap, tahap pertama adalah pekerjaan pondasi untuk semua masa bangunan, tahap kedua yaitu pekerjaan struktur atas untuk pembangunan sekolah.

Adapun gambar untuk masing-masing masa bangunan adalah seperti yang terlihat pada gambar 1.

*Corresponding author. Dodi mardotillah Email address: : dodi.mardo@gmail.com

Gambar 1

Potongan masing-masing masa bangunan

Keberhasilan struktur beton dapat dimulai dari proses pencampuran, penuangan dan perawatan setelah pengecoran, namun prakteknya dilapangan terdapat kesalahan dalam proses tersebut. Pembahasan studi kasus proyek ini adalah terjadinya keretakan pada elemen-elemen struktur.

Retak pada struktur dapat di kategorikan dari beberapa aspek sebagai berikut :

- 1. Retak karena gaya geser
- 2. Retak karena korosi dan teal selimut yang tidak cukup
- 3. Retak karena korosi tulangan memanjang
- 4. Retak karena momen lentur atau beban membesar
- 5. Retak karena gaya tekan disisi atas balok atau tulangan bawah mungkin over reinforced

Retakan dapat diidentifikasi melalui tiga aspek, yaitu ukuran, panjang dan pola yang terlihat. Mengukur ukuran retakan ini menjadi tantangan karena bentuknya yang tidak teratur. Pada fase pengeringan beton, muncul retakan mikro yang sukar dikenali karena dimensi yang sangat kecil, umumnya memerlukan Mikrsokop crack untuk deteksinya, dengan lebar yang bervariasi antara $0.125-1.0~\mu m$ dalam delapan jam pertama setelelah pencetakan. Berikut tabel lebar retakan maksimum yang diizinkan.

Tabel 1.Lehar Retak Maksimum yang diizinkan

LCOar 1	Retak Maksimum yang anzinkan	
No	Jenis Struktur dan Kondisi	Toleransi Lebar Retak (mm)
1	Struktur dalam ruangan, udara kering, pemberian	0.41
1	lapisan kedap air	0,41
2	Struktur luar, kelembaban sedang, tidak ada pengaruh	0.2
2	korosi	0,3
3	Struktur luar, kelembaban tinggi pengaruh kimiawi	0,18
4	Struktur dengan kelembaban tinggi dan dipengaruhi	0,15
4	oleh korosi (salju/es, air laut0	0,13
5	Struktur berkaitan dengan air	0,1
_		

(Sumber: ACI Causes, Evaluation, and Repair of Cracks in Concrete Structures, 2007)

2. METODE PELAKSANAAN

Metodologi dalam studi kasus ini terdapat beberapa cara yaitu dengan cara pengamatan visual, pengujian *ultra pulse velocity (UPV)*, dan pengujian kuat tekan beton inti *(core drill)*. LAPI ITB. (2025)

Metode pertama yaitu dengan pengamatan visual, yang mana pada tahapan ini bisa dilihat dan diukur lebar retakannya, kemudian setelah pengamatan visual dilakukan pengujian UPV bertujuan untuk memeriksa kondisi internal dan kualitas material komponen struktur beton, seperti kepadatan, homogenitas, dan cacat internal, seperti retak berongga

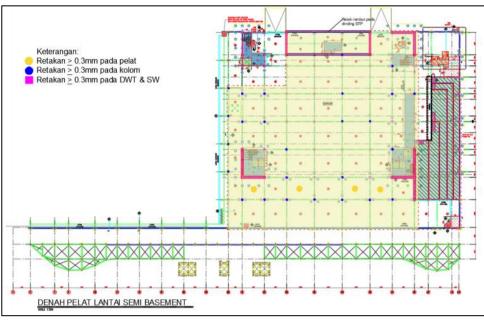
serta bertujuan untuk mengukur kedalaman retakan yang terjadi pada permukaan beton. (ASTM) C42/C42M-20. (2020)

Metode terakhir yaitu pengujian *core drill* yang mana beton di ambil *sample* dari beberapa komponen struktur untuk di tes kuat tekan yang terjadi.

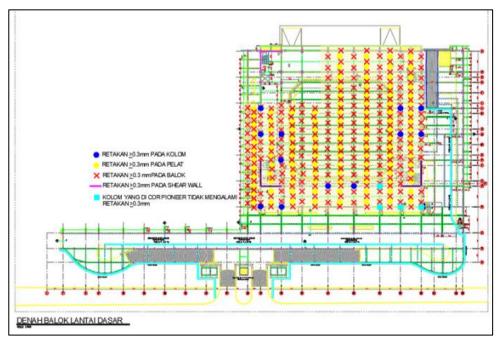
a. Metode Pengamatan Visual
Berikut ini beberapa hasil pengamatan visual pada elemen struktur.

Gambar 2
Keretakan terjadi pada kolom

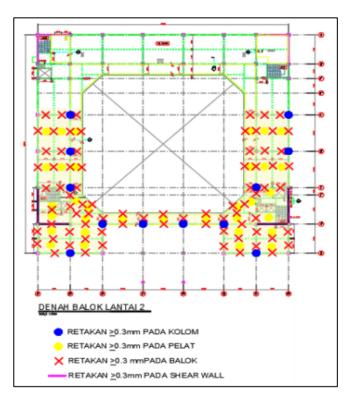
Gambar 3 Keretakan terjadi pada balok

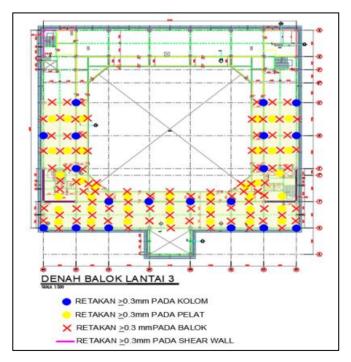


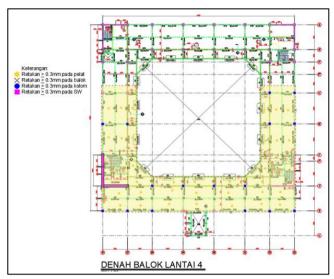
Gambar 4Keretakan terjadi pada plat lantai



Gambar 5Keretakan terjadi pada plat dinding geser


Dari masing-masing lantai terdapat retakan yang terjadi disetiap elemen struktur, berikut zona retakan dari masing-masing lantai.


Gambar 6Zona retakan lantai semi *basement*


Gambar 7 Zona retakan lantai dasar

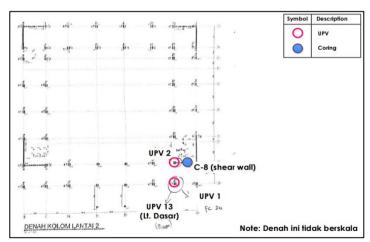
Gambar 8Zona retakan lantai 2

Gambar 9 Zona retakan lantai 3

Gambar 10

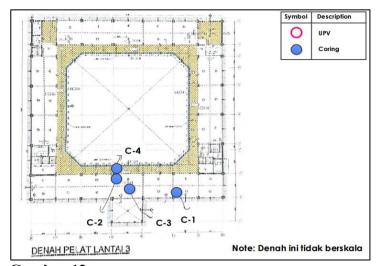
Zona retakan lantai 4

Dari hasil pengamatan visual berdasarkan zona keretakan pada elemen struktur di rangkum sebagai beriku.

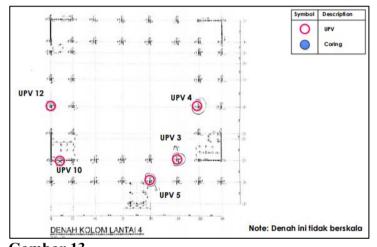

Tabel 2.Data retakan pada elemen struktur

1				
Lantai	Retak	Tidak Retak	Jumlah	% Retak
4	16	6	22	72.727
3	20	2	22	90.909
2	12	8	20	60
Dasar	12	10	22	54.545
Semi Basemen	t 30	27	57	52.632
Total Kolom	90	53	143	62.937

b. Metode UPV


c. Metode *Core Drill* (ASTM) C597-16 (2016)

Sebelum melakukan pengujian UPV dan *core drill* maka dipetakan beberapa titik yang akan dites terlebih dahulu sebagai berikut.



Gambar 11

Titik pengambilan tes UPV & Core drill lantai 2

Gambar 12
Titik pengambilan tes *UPV & Core drill* lantai 3

Gambar 13 Titik pengambilan tes *UPV & Core drill* lantai 4

Dari hasil pengujian *UPV* di dapatkan hasil sebagai berikut.

Tabel 3. Hasil Uji UPV

		Pulse	Congreta Quality	Shear Wave	Mutu
No	Kode	Velocity	Velocity Concrete Quality BS-1881-203	Velocity	Beton
		(m/sec)	DS-1001-203	(m/sec)	(Mpa)
1	Kolom 1	3370	Cukup Baik	2160	28.5
2	Kolom 2	3369	Cukup Baik	2198	29.4
3	Kolom 3	3144	Cukup Baik	2101	23.1
4	Kolom 4	3150	Cukup Baik	2063	22.6
5	Kolom 5	3407	Cukup Baik	2156	29.0
6	Plat 1	3464	Cukup Baik	2109	28.4
7	Plat 2	2707	Jelek	1768	12.3
8	Plat 3	3107	Cukup Baik	1915	18.9
9	Plat 4	3149	Cukup Baik	1970	20.7
10	Shear wall	3662	Baik	2283	37.5
11	Plat 5	3420	Cukup Baik	2063	26.4
12	Kolom 6	3300	Cukup Baik	2151	27.0
13	Kolom 7	3612	Baik	2292	36.9

Dari hasil pengujian UPV, beton cenderung cukup baik, untuk lebih yakin dengan hasil UPV maka berikut hasil dari tes uji tekan metode *core dirll*.

Tabel 4. Hasil Uji Tekan *Coring*

No	Kode	Compressive Strength (Mpa)
1	C1 Lt. 3	16.12
2	C2 Lt. 3	12.87
3	C3 Lt. 3	14.57
4	C4 Lt. 3	13.43
5	C5 Lt. 4	14.45
6	C6 Lt. 4	15.39
7	C7 Lt. 4	17.23
8	C8 Sw Lt.2	16.11

Dari hasil pengujian kuat tekan, mutu beton aktual tidak tercapai dengan mutu beton rencana yaitu fc 30 MPa dan 35 MPa. Hal ini akan dibahas pada bagian hasil dan pembahasan.

3. HASIL DAN PEMBAHASAN

Proyek yayasan ini terdapat dua *supplier* untuk proses pengecoran, adapun dari masing-masing *supplier* telah melakukan *mix design* terlebih dahulu untuk kemudian dilakukan pengecora, dari *mix design* tersebut dapat diketahui kadar dari masing-masing campuran, seperti agregat kasar, agregat halus, bahan adiptif dan air yang digunakan, berikut adalah perbandingan *mix design* dari kedua *supplier*.

Tabel 5. Perbandingan kedua *supplier* mutu beton fc 35 MPa

Parameter /Nama Beton		fc' 35 (Supplier A)		fc' 35 (Supplier B)	
		Vendor	SNI 7656 : 2012	Vendor	SNI 7656 : 2012
fc'	(MPa)	35	35	35	35
,	w/cm	0.464	0.432	0.404	0.432
fcr	' (MPa)	-	38.81	-	38.81
Air yang dip	perlukan (kg/m³)	227	243	165	202.2
Presentase ud	ara tertangkap (%)		3		1.5
Berat semer	ı yang diperlukan	489	562.6	408.3	468.2
Volume agre	gat kasar/volume	0.6	0.5	0.65	0.65
	Semen	416	478.2	349	397.9
Berat	Fly ash	73	84.4	62	70.2
material/volum	Air	227	243	165	202.2
e beton (kg/m³)	Pasir	62.6	635.3	700	613.2
	Kerikil	933	777.5	1020	1020
Presentase be	rat binder/agregat	31.40%	39.80%	23.70%	28.70%
	Semen	132.1	151.8	110.8	126.3
	Fly ash	34.8	40.2	29.5	33.4
	Air	227	243	165	202.2
Volume material/volume - beton (dm³/m³) .	Pasir	242.7	245.9	271	237.3
	Kerikil	361.1	302.5	396.9	396.9
	Pasta Semen	393.8	435	305.3	362
	Volume agregat/voum beton	603.8	548.4	667.9	634.2

Tabel 6. Perbandingan kedua supplier mutu beton fc 30 MPa

Parameter /Nama Beton		fc' 3	fc' 30 (Supplier A)		fc' 30 (Supplier B)	
		Vendor	SNI 7656 : 2012	Vendor	SNI 7656 : 2012	
fc' (I	MPa)	30	30	30	30	
w/	′cm	0.516	0.493	0.45	0.493	
fcr' (MPa)	-	33.39	-	33.39	
Air yang dipe	rlukan (kg/m³)	223	243	165	202.2	
Presentase udar	a tertangkap (%)		3		1.5	
Berat semen y	ang diperlukan	432	493.4	367	410.5	
Volume agrega	it kasar/volume	0.59	0.5	0.65	0.65	
	Semen	368	419.4	312	348.9	
Berat	Fly ash	64	74	55	61.6	
material/volume	Air	223	243	165	202.2	
beton (kg/m3)	Pasir	666	661	730	650.4	
	Kerikil	954	808.5	1030	1030	
Presentase bera	t binder/agregat	26.70%	33.60%	20.90%	24.40%	
	Semen	116.8	133.1	99	110.8	
	Fly ash	30.5	35.2	26.2	29.3	
	Air	223	243	165	202.2	
Volume	Pasir	257.6	255.8	282.7	251.7	
material/volume	Kerikil	371.2	314.6	400.8	400.8	
beton (dm³/m³)	Pasta Semen	370.3	411.4	290.2	342.3	
	Volume agregat/voume beton	628.9	570.4	683.5	652.5	

Kajian campuran yang digunakan masing-masing supplier sebagai berikut:

- Supplier A, penggunaan air per meter kubik beton cenderung berlebihan (>200 liter/m3) yang mana menyebabkan campuran beton mudah mengalami segregasi, sulit dikerjakan, dan rentan susut. Ukuran agregat maksimum yang relatif kecil (10mm) juga memperburuk kondisi susut
- Supplier B, jumlah air per meter kubik sudah cukup baik (165 kg/m3) dengan penggunaan superplasticizer (SP), menghasilkan workabiliti yang lebih baik, lebih mudah dikerjakan, dan memiliki sifat susut yang rendah. Penggunaan ukuran agregat maksimum yang lebih besar (25 mm) juga berkonstribusi padda kinerja beton yang lebih baik
- w/cm supplier A > 5 % w/cm SNI (mutu beton 30 MPa)
- w/cm supplier B < 10 % w/cm SNI (mutu beton 30 MPa)
- w/cm supplier A > 7 % w/cm SNI (mutu beton 35 MPa)
- w/cm supplier B < 10 % w/cm SNI (mutu beton 35 MPa)

Dari hasil kajian tersebut dapat disimpulkan bahwa campuran beton dari *supplier* B cenderung menggukan air yang berlebih pada saat prosess *mix design*, oleh karena itu sebelum pelaksanaan dilakukan pengujian kuat tekan beton pada benda uji berikut hasilnya.

Tabel 10.

Perbandingan Benda Uji dengan Aktual

		Mutu	Mutu
No	Kode	Beton Rencana	Beton Aktual
		(Mpa)	(Mpa)
1	Plat 1	47.1	28.4
2	Plat 2	52.7	12.3
3	Plat 3	57.3	18.9
4	Plat 4	53.0	20.7
5	Plat 5	52.1	26.4

4. KESIMPULAN DAN SARAN

Pada umumnya campuran beton akan optimal bila campuran air yang digunakan tidak berlebih, dari studi kasus ini dapat disimpulkan sebagai berikut :

- 1. Pentingnya pengawasan dalam proses desain campuran beton, agar bahan-bahan yang digunakan sesuai dengan standar.
- 2. Pemilihan agregat mempengaruhi kekuatan susut beton
- 3. Campuran beton akan mempengaruhi mutu beton
- 4. Jumlah air yang terlalu banyak sangat berpengaruh untuk hasil beton
- 5. Disarankan agar diperkuat dengan support baja
- 6. Beberapa elemen harus di bongkar agar mutu beton dapat tercapai

5. DAFTAR PUSTAKA

- 1. American Concrete Institue (ACI). (2007). Causes, Evaluation, and Repair of Cracks in Concrete Structures.
- 2. American Standard Testing and Material (ASTM) C42/C42M-20. (2020). Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. (Tidak ada dalam Sitasi)
- 3. American Standard Testing and Material (ASTM) C597-16 (2016). Standard Test Method for Pulse Velocity Through Concrete.
- 4. Standar Nasional Indonesia (SNI). (2012). Tata Cara Pemilihan Campuran untuk Beton Normal, Beton Berat dan Beton Massa, Jakarta
- 5. LAPI ITB. (2025). Laporan Akhir Survei Lapangan dan Analisis Struktur Parsial Gedung Sekolah, Bandung.