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Abstract. 

Soccer games optimization is a new metaheuristics method that mimics the soccer player’s movement, 

wherein each player decides their best positions to dribble the ball towards the goal based on the ball 

position and other players’ position. This paper discussed the method for continuous and discrete problems 

based on ‘pair cooperation’ between a player and the ball position. The algorithm is implemented in eight 

benchmark problems consisting of continuous unconstrained problems, continuous constrained problems and 

discrete problem. The performance of the algorithm for the continuous unconstrained problems is compared 

to two meta-heuristic algorithms, the genetic algorithm and the particle swarm optimization. The continuous 

constrained problems and the discrete problem are compared with the result in the literature. The 

experimental results show that the algorithm is a potentially powerful optimization procedure that can be 

applied for various optimization problems. 

 Keyword: Inventory, Lost sales, Finite planning horizon 

 

1. INTRODUCTION 

Meta-heuristic algorithms have been implemented 

to solve various optimization problems. These 

algorithms overcome the drawback of 

conventional, computational-based numerical 

linear and nonlinear programming methods in 

which gradient information is considered 

necessary. In many real problems, gradient search 

approaches could become very difficult and even 

unstable (Lee & Geem, 2005); therefore meta-

heuristic algorithm eliminates the need for gradient 

information. The meta-heuristic algorithms employ 

randomness and set of rules to obtain an acceptable 

solution. They are frequently used when analytical 

solution is difficult to achieve. The algorithms 

provide a quicker and easier way of optimization 

problems. Due to the nature of heuristic method, 

meta-heuristic algorithms do not guarantee optimal 

solution; however, they typically produce 

acceptable solution.  

Many of the existing meta-heuristic 

algorithms are inspired by natural phenomena. 

Some of these were compared from biological 

evolutionary: the genetic algorithm (Holland, 

1975); from the animals’ behavior: tabu search 

(Glover , 1998), ant colony optimization (Dorigo  

and Caro, 1999), and particle swarm optimization 

(Kennedy  and Eberhart, 1995); from the physical 

processes: simulated annealing (Kirkpatrick  et al, 

1983); and from the music improvisation: harmony 

search (Geem, et al, 2001; Yang, 2009; Geem et al, 

2005).  

There are two important components of a 

meta-heuristic; intensification and diversification 

(Yang, 2009). Intensification is the ability to 

investigate the neighborhood of a potential 

solution.  Intensification is important for improving 

the potential solution during the search because of 

its ability to find better solution near a potential 

solution.  Diversification is the ability to explore 

the whole solution space and is important  to avoid 

trapped in local optimal solution. In order to 

obtained high performance of metaheuristic, these 

two components should be laid in balance.  

 In this paper, a new meta-heuristic method 

called Soccer Game Optimization (SGO) is 

discussed. The algorithm mimics the soccer 

player’s movement during the soccer game. The 

algorithm is implemented in continuous and 

discrete problems. The performance of the SGO is 

compared with genetic algorithm (GA) and particle 

swarm optimization (PSO) for the continuous 

unconstrained problems while its performance for 

the continuous constrained problems and the 

discrete problem are compared to previous 

researches reported in literatures. The rest of the 
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paper is organized as follows. Section 2 describes 

the background and the structure of the method. 

Section 3 describes the selected benchmark 

problems. Section 4 discusses the performance of 

the algorithm. Conclusion and future directions are 

presented in Section 5. 

 

2. SOCCER GAME OPTIMIZATION 

Soccer Game Optimization is proposed by 

Purnomo et al. (2012). The method is described 

using soccer player movement as its analogy. The 

method is a simplified a soccer game player’s 

movements. Many terms used in the method are 

derived from the soccer game. The terms used in 

the method are: 

1. player’s 

position 

: encodes a set of decision 

variables 

2. a player : a  candidate solution 

3. a team  : a simultaneous set of 

candidate solutions 

4. Kick : iteration  

5. ball  : best solution so far 

6. soccer field : available search space 

7. soccer rules : constraints 

8. Goal : optimal solution 

A player’s position encodes a set of decision 

variables. The quality of a player is evaluated 

based on its advantageous position which 

represents its objective value. SGO is a population 

based method where a team consists of several 

players. The relationship between players, player’s 

position, a team, and objective function is 

illustrated in figure 1. 

During the search, a single kick will 

manipulate a simultaneous potential solution (a 

team). It is similar to the soccer games that all 

players move simultaneously at the same time. The 

performance of meta-heuristic algorithms is often 

assessed based on the number of objective function 

evaluation. For this reason, the number of kick is 

used to represent the number of iteration. The 

number of objective function evaluation for each 

kick depends on the team size. For example, if a 

team consists of 10 players, there are 10 objective 

function evaluations (each player is evaluated 

once) for each kick. Soccer field represent the 

available search space where the search is 

conducted.  All players should be on the field. The 

soccer rules represent the problem constraints that 

define some prohibited conditions. The players 

should follow the rules. In constrained problems, 

not all solutions in the search space are feasible. 

The rules divide the solutions into feasible and 

infeasible solutions. The goal is the optimal 

solution to achieve. Unlike the soccer where the 

goal is on the edge of the field, the optimal solution 

of an optimization problem can be in any location 

in the search space. In addition, the method does 

not consider the opposite player’s movements. 

In order to ensure player’s movement, two 

operations are introduced to manage the 

diversification and intensification. Diversification 

is controlled by random movement, called ‘move 

off the ball’, to explore the search space. The 

movement minimizes the chance of premature 

convergence. Intensification is managed by 

performing movement based on the information 

sharing among players and between players and 

ball, called ‘cooperation movement‘. Cooperation 

movement is characterized by the degree of 

information sharing, called cooperation rate. In a 

time, a player’s movement can be a ‘move off the 

ball’ or a ‘cooperation movement’.   

The information sharing is divided into two 

types, local information and global information. 

Local information can only be accessed by other 

players nearby. Global information means all 

players can access the information. For example, 

ball position is accessible to all players. The 

general SGO’s steps are: Problem and parameters 

initialization, initialize player’s position and ball’s 

position, player’s movement, determine the new 

ball’s position, termination criteria. The flowchart 

of SGO is given in Figure 2.  

  

 

Figure 1. Players, player’s position, a team and objective function  



                     

                                             Soccer Game Optimization for Continious and Discrete Problem                                        67 
 

 

 
 

Figure 2. The flowchart of SGO 
 

Due to the different characteristics of continuous 

and discrete problems, the approached for both 

problems are different. Therefore, the explanations 

of the method for continuous and discrete problems 

are discussed separately.  

2.1 Continuous problem 

2.1.1 Parameter initialization for continuous 

problem 

In the first step, the optimization problem can be 

expressed as: 

         (1) 

 s.t.                         

where      is the objective function,      is the 

value of variable i at time t. For most continuous 

optimization problems, prior knowledge of the 

search space is known. Therefore, for a known 

search space of variable i [a,b],          for 

   . The algorithm parameters that need to be 

initialized are move off the ball ‘m’, cooperation 

rate ‘w’, team size ‘s’ and termination criteria. 

 

2.1.2 Initialize player’s position and ball’s 

position for continuous problem 

In this step, each initial player position is generated 

randomly. It can be written as: 

  
 

             
 

     
 

       
 

  

(2

) 

  
 
                                        After all 

players’ positions are initialized, their positions are 

then evaluated using the objective function. A 

player has the most advantageous position if it has 

the smallest value in the team. As a player with the 

most advantageous position will dribble the ball, 

the initial ball position        is formulated as: 

 

     
       (  

    
     

    
       

 
(  

 
)       

    
  ) (3) 

  

     
   is the ball’s at time 0. The ball’s position is 

defined by a set of solution vector   
 . s is the team 

size and   
 
(  

 
) is the objective value of player j at 

time 0.  

2.1.3 Player movement for continuous problems 

Player movement is the most important step in the 

SGO. Two important mechanisms are presented for 
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a player movement: the ‘move off the ball’ and the 

‘cooperation movement’ among players. Move off 

the ball is a global search where a player explores 

the entire search space. Cooperation movement is a 

local search where a player exploits the search 

space nearby and is determine by its cooperation 

rate. Each player movement is described as:  

 

2.1.3.1 Move off the ball 

By a probability of m, a player will move randomly 

to explore the search space. 

   
 
                           

  
 
 is the player’s position at time t. 

 

2.1.3.2 Cooperation movement 

By a probability of 1-m, a player will run towards 

the position of the ball. The main consideration of 

the cooperation mechanism is the relationship 

between two options and the number of option in 

the search space. In continuous problems, the 

relationship between options is known and there 

are infinite options in the search space. Figure 3 is 

an example of continuous problem with single 

variable i. In the figure, the solution space is 

limited by [a, b]. For two known player position 

    
   and     

 , their relation is known (    
      

 ). 

The number of available option between a and b is 

infinite since a player can be in any position 

between a and b.  

 
Figure 3. Example of continuous problem 

The main idea of cooperation movement for 

continuous problems is exploiting the search space 

among players using the centroid principle. The 

new player’s position is determined by players 

nearby and the ball. The equation is expressed as: 

  

    
 

      
 
       

 
 

 

 
∑     

 

         

       
  (4) 

for             

Where i is decision variable,   is a set of local 

players that affecting player j,   is a set of global 

players and the ball, k is member of    and   , z is 

the accumulative number of member  of    and 

  ,     
  is cooperation rate of k at time t and       

 
 

is the previous player j position. 

To illustrate the equation above, we use the 

following assumption: A player only influenced by 

its previous position and the ball position. 

Therefore   consists of no player and    consists 

of the ball position. As the member of    is zero 

and the member of   is 1, the value of   is 1.  

Using the assumption, equation 4 will become:  

    
 

      
 
       

 
     

          
  (5) 

where       
  is the ball position at time t-1,     

 
 is 

cooperation rate of player j at time t and     
 is 

cooperation rate of the ball at time t. As only  two 

positions are considered, the search space of each 

variable can be illustrated as a line. The search 

space can be divided in three areas: I, II and III, as 

shown in Figure 4. 

 

Figure 4. Search area,two agents are considered 

In order to avoid explosion during the search, 

it is important to verify the search area. As for each 

variable, the previous player’s value       
 

 and the 

previous the ball’s value       
  are known (obtained 

in previous kick) and their relationship are known 

(for example        
 

         
  ), then     

 
 and     

  

become dependent control factors if the search 

space is specified. The relationships between these 

two controls variables for       
 

       
  are 

formulated as (see Appendix A):  

    
  

(      
 
)       

 

      
 

 If      
 

       
 

 (6.a) 

       
 
        

 

      
 

     
  

   
    

 
        

 

      
 

 

If        
 

 

      
 

       
  

(6.b) 

    
    

    
 
        

 

      
 

 If      
 

       
  (6.c) 

In Figure 4, using the centroid principle, area II is 

the most feasible search space, as its boundaries are 

better known than the other areas. For this area, we 

could derive a simplification of eq. 6.b (see 

Appendix B): 

    
 

     
    (7) 

2.1.4 Determine the new ball position  

After all player moves to the new position, the 

players are evaluated. The candidate for the next 

ball dribbler is determined based on the best 

player’s position.  



                     

                                             Soccer Game Optimization for Continious and Discrete Problem                                        69 
 

 

     
      (  

 (  
 )   

 (  
 )     

    
  ) (8) 

s.t.  

  
  {  

    
      

 }  

     
   is the candidate dribbler. Its position is 

defined by a set of solution vector   
  .  

 

If the current candidate of ball dribbler    is better 

than the ball position, the ball will then be passed 

to that current best player. Otherwise, the ball is 

dribbled by the current ball dribbler. 

      
       (     

             
  ) (9) 

s.t.            

   
  {  

      
 }  

 
2.1.5 Termination Criteria  

Termination criteria can be based on the maximum 

number of kick, a small number of error ε or when 

the kick does not provide any improvement after 

several kicks. If the termination criterion is 

reached, kick is stopped. Otherwise steps 2.1.3 and 

2.1.4 are repeated. Figure 5 illustrates the work of 

method for continuous problems when one player 

is affected by it previous position and the ball 

position. 

2.2 Discrete problem 

2.2.1 Initialization parameter for discrete 

problem 

Initialization step for discrete problems is similar to 

the continuous problems. The optimization 

problem is the same as equation 1.  

          

 s.t. 

                       
However, when the variables are discrete, the 

number of option for each variable is finite. 

Therefore         , where    is a set of available 

options for variable i, that is 

                         . The other 

parameters that need to be initialized are move off 

the ball ‘m’, cooperation rate ‘w’, team size ‘s’ and 

termination criteria. 

 

2.2.2 Player’s position and ball dribbler 

initialization 

This is similar to 2.1.2. Each player’s position is 

initialized randomly using eq 2.   

  
 
             

 
     

 
       

 
   

since the number of options are finite,    
 
    . 

After all player’s positions are initialized, each 

player is evaluated based on the objective function. 

The best player will dribble the ball as expressed 

as:  

     
       (  

    
     

    
       

 
(  

 
)       

    
  ) 

 
 

  

2.2.3 Player movement for discrete problem  

Move off the ball 

By a probability of m, a player j will move 

randomly to explore the search space. 

   
 
                           

 Cooperation movement 

In discrete problems, the relationship between 

finite options in the search space is not known 

necessarily. For example, two known options of 

variable i     
     and     

     does not necessarily 

fulfill the relationship:  

    
          

     or     
         

    . 

The cooperation movement in this research is 

based on the weight that represent the contribution 

of the option to the output. The cooperation rate   

is used as the weight of each option; as a 

consequence, each option has its own cooperation 

rate. This differs from the continuous problems 

where w is assigned to a variable not an option. 

The w is shared among players and between player 

and the ball. Every time a player moves into a new 

position, the value of w for each selected option is 

adjusted. Each w of the selected option in a player 

will be added if the player position is better than 

the ball position, otherwise it is reduced. The 

changes of w for selected option in player j are 

influenced by players or ball in    and      To 

illustrate how to determine   , we used the same 

assumption as in the continuous problem: a player 

position is determined by its previous position and 

the ball position. In order to avoid wild fluctuation 

of  , we limit its value as      . Since        

is the minimization function,         is better than 

       if            . An option’s weight is 

updated as follow: 

          
 

 {
            

 
 (              

 
)               

 

            
 

            
 

             
 

     
    

  
   

 
          

         
 

(10

) 

where           
 

 is the weight of selected option so 

for variable i at time t for player j at time t-1. In 

other words, the weight w of the selected option at 

time t is updated based on the w of the same option 

in previous state (even though the option is not the 

selected option in at t-1).  

Adjusting all related           
 

, the player position is 

updated based on the value of           
 

 for   

       . We use centroid principle to select an 

option of each variable. For each variable i, an 

option with the highest value of weight is assumed 

as the center of the option and is decided as the 

selected option (see Figure 6).  
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2.3 Initial Model 

 
Figure 5. Illustration of the SGO 

 

The new selected option can be written as: 

    
 

           (11) 

s.t.  

              

          
                             

  

A new player j position can be written as: 

  
 
 {  

 
          

 
            

 
       }  

 

 
 

Figure 6. An illustration to select an option of a 

variable 
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2.2.4 Determine the new ball position 

After all players move to the new positions, the 

players are evaluated using the objective function. 

The candidate for the next ball dribbler is 

determined based on the best new position of the 

players as expressed in eq 8.  

     
      (  

 (  
 )   

 (  
 )     

    
  )  

 

 

s.t.  

  
  {  

    
      

 }  

 
The new ball dribbler position is determined using 

eq 9. 

      
       (     

             
  ) 

 

 

2.2.5 Termination criteria 

Termination criteria can be based on the maximum 

number of kick, a small number of error ε or when 

the kick does not provide any improvement after 

several kicks. If the termination criterion is 

reached, kick is stopped. Otherwise steps 2.2.3 and 

2.2.4 are repeated. 

 

3. NUMERICAL EXAMPLE  

In this paper, 5 continuous unconstrained problems, 

2 continuous constrained problems and 1 discrete 

problem are used to evaluate the performance of 

the SGO.  

a. Six hump camel back function 

Six hump camel back function is a function for 

global optimization testing. This function has four 

local minima and two global minima (Lee eta al, 

2007). The function is formulated as: 

          (       
  

  
 

 
)   

       

       
    

               (12) 

 

The two global minima for this function are:  

                                   

and                                   .  

b. Rosenbrock’s function 

Rosenbrock function, also known as banana 

function, exhibits a global optimum near a long, 

narrow, parabolic-shaped flat valley (Rosenbrock , 

1960). This function is often used for performance 

assessment since it is difficult to converge to the 

global optimum. In this study, two dimension of 

Rosenbrock function is used.  The function is 

formulated as 

       ∑ (    (       
 )

 
       

 )   
     

              (13) 

The global minimum for this function is:       , 

                

 

 

c. Rastrigin’s  functions 

This function was first proposed by Rastrigin (Torn 

and Zilinskas, 1989). The function was extended to 

allow for the increase of the number of variables. 

The generalized Rastrigin is a nonlinear, multi-

dimensional function with several local minima but 

exhibits only one global minimum (Saez et al, 

2005). This function is highly modulated and is 

frequently used performance measurement. In this 

study, two dimension of the Rastrigin function is 

used. The function, in this paper, is formulated as:  

           ∑ (  
                )

 
     

               (14) 

The global minimum for this function is:       , 

                

d. Wood function 

Wood function is a fourth-degree polynomial 

function (Lee and Geem 2005). This function is 

formulated as: 

 
               

          
           

          
  

     [               ]                                

(15) 
The global minimum for this function is:       , 

                    

e. Goldstein and Price function-1 

Goldstein and Price function-1 is an eight-degree 

polynomial function with 2 variables. This function 

has three local minima and one global minimum 

(Lee and Geem 2005). The function is formulated 

as: 
                               

       
         

                    
          

    
                  

      (16) 
 

The global minimum for this function is: 
         .  

f. Constrained function 1 

                          

             (17) 
Subject to 

                  

        
  

  
   

      

           ,           

The problem originally introduced by (Braken  and 

MacCormick , 1968). It has the optimum solution 

at                          .  

g. Constrained function II 

         
                

       

               (18) 

Subject to 
                               

   

        
                    

       ,        
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The problem is found in (Deb , 2000). The 

unconstrained objective function has the optimal 

solution at         . Due to the constraint, the 

minimum solution is located at 

                             . 
 

h. Discrete problem : School bus routing 

problem 
 

School bus routing problem is multi-objective 

problem to minimize the number of operating bus 

and the travel time due to bus capacity and time 

window. This problem has two constraints: time 

constraint and capacity constraint. The diagram of 

school bus routing is illustrated in Figure 7. 

 

 

Figure 7. Diagram of school bus routing network 

(Geem et al, 2005) 
 

The routing problem parameters are specified 

as: fixed cost for each operating bus (fc) is 

$100,000/bus; routing cost (rc) is $ 105/min; 

shortest path between two nodes is calculated by 

Floyd and Warshall’s algorithm; penalty cost for 

capacity constraint is $100,000 when any bus 

carries more than 45 students; penalty cost for time 

constraint is $100,000 when any bus operates more 

than 32 minutes; boarding time is 6 second per 

students and the number of buses are 4. The 

problem model is described in  (Geem et al, 2005). 

 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 

For continuous unconstrained problems, two 

existing algorithms, the GA and the PSO, are used 

to compare the performance of the SGO. GA is 

selected since it performs satisfactorily for many 

types of optimization problems (Silva and Sousa, 

2008). Likewise, PSO is selected as this method 

has been considered powerful and has very good 

performance for continuous types of problems. 

While for the continuous constrained problems and 

the discrete problem, the performance of the SGO 

is compared with the result reported in literatures. 

4.1 Continuous problems  

In order to reasonably compare the three methods 

for continuous constrained problems, the number 

of times for objective function evaluation and the 

number of computational runs are made the same 

for all the methods. The population sizes are 10, 

numbers of different runs are 50, the random 

values are bounded between -5.0 and 5.0, and the 

number of kick for the problems is the same for all 

the algorithms. The SGO used the following 

assumption: a player is only affected by its 

previous position and the ball position, golden ratio 

is used to set the cooperation rate          ,   
                , and the probability that 

a player will move randomly (m)  is 0.1.  The 

crossover and mutation rate for the GA are set as 

follows: crossover rate is 0.8 and mutation rate is 

0.2.  The GA toolbox in Matlab 7 is used since it is 

well designed and is widely accepted as a good 

optimization tool. The PSO is implemented using 

PSO toolbox-beta-0.3 developed by Jagatpreet 

Singh (Khosla  et al, 2006). For the PSO algorithm, 

two types of adjustments are made in terms of the 

number of a particle neighborhood. Neighborhood 

sizes of 0 and 2 are used for the PSO 1 and the 

PSO 2 respectively but the other parameters are the 

same. They are set to: c1 = 2, c2 = 2, c3 = 1, 

           ,         ,             , 

        . The method is implemented using 

Matlab 7.0. Table 1 provides the experimental 

results for the unconstrained continuous problems. 
 

In this paper, the constrained problems are 

reformulated into unconstrained problem by 

applying penalty. Static penalty is used. 

 

             ∑     
  
                          (19) 

 

   {
 
 
  
             
         

 
             

 

 

where         is the new objective function,   is 

the number of constraints,   and   are the  penalty 

coefficient, g(x) is the degree of the constraint 

violation. Using the formulation above, we use the 

information about the number of constraints 

violated and the distance between the violations to 

the feasible solution. This has been prove to be 

very effective (Dasgupta and Michalewica, 1997; 

Coello, 2000; Coello, 1997). The number of kick 

for constrained function I and II is 1000.  The 

comparison result for constrained problems is 

given in Table 2. 
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Table 1. Computational results for unconstrained problems 

 

 
 

Table 2. Comparison of the constrained function I and constrained function II 

 

 

 

4.2 Discrete problems  

The performance of the SGO is compared with the 

performance of harmony search and the genetic 

algorithm reported in (Geem et al, 2005). The 

problem is set the same as in (Geem et al, 2005).  

In order to fairly compare with the existing 

literature, the number of objective function 

evaluation is set as 1000 (team size x number of 

kick) the same as mentioned in the literature. The 

algorithm is run for 20 times with different 

probability of move off the ball, m.  

5. DISCUSSION 

The computational results for the continuous 

unconstrained problems show that the SGO clearly 

outperforms the GA and is comparable to PSO 1 

and PSO 2. The SGO’s best and average values 

shows that the algorithm produces better accuracy 

(low bias), and the standard error values have 

better precision (low variance) than the GA in all 

the five benchmark problems. Comparing the SGO 

to PSO 1 and PSO 2, the SGO produces better 

accuracy and precision in the Wood function. It has 

the same performance in the Six-hump camel back 

function and in the Goldstein and Price function-1, 

and produces lower precision in the other 

benchmark functions.  

It is interesting to notice that the SGO 

produced the same or better result than the other 

three methods in term of the best value achieved 

during the 50 replications. The SGO’s average 

value and standard error clearly indicate that the 

SGO solution range always covers the optimal 

solution. This signifies that the SGO has a good 

diversification method. On the other hand, the PSO 
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1 and PSO 2 do not always produce the solution 

range that covers the optimal solution. For 

example, the Wood function problem in PSO 2. As 

the standard error of PSO 1 and PSO 2 are very 

small (almost zero), using 95% confidence level, 

the solution range is   ̅         ̅  
                               . The 

optimal solution for the problem (       ) is not 

covered in the solution range and adding the 

confidence level does not change the range of the 

solution. This problem may occur due to premature 

convergence.  

The experiment for the continuous constrained 

problems also produces better result than the 

previous result reported in the literatures. In the 

previous research, constrained function I is solved 

using genetic algorithm (Homaifar and Qi, 1994; 

Fogel, 1995), evolutionary algorithm (Fogel, 1995 

) and harmony search (Lee and Geem, 2005). 

Constrained function II is solved using GA-based 

method (Deb, 2000) and harmony search (Lee and 

Geem, 2005). The GA-based method implemented 

Powell and Skolnick constraint handling method 

(PS method) and tournament selection (TS) (Deb, 

2000). The results of continuous unconstrained and 

constrained problem reveals that the SGO can be 

used for any continuous optimization problems. 

The experiment result for the discrete problem 

show that the SGO could reach the global optimum 

twice out of 20 different runs, the average cost is $ 

400,889 and standard error is $31,319. The result is 

comparable to the literature (Geem et al, 2005) 

where the harmony search reached the global 

optimum twice and the GA reached it once out of 

20 different runs. The average costs are $399,870 

in harmony search and $409,597 in GA. The 

standard errors for both algorithms are not 

mentioned in the literature (Geem et al, 2005). 

The SGO only considers pair cooperation 

between a player and the ball position as its 

information sharing mechanism. The experiment 

results show that the method works well for 

continuous or discrete problems. Based on the 

experiments, we infer that the SGO have the 

potential to become a powerful optimization 

technique and can be applied in various 

engineering optimization problems. The issues of 

complex information sharing and considering 

dynamic optimization problems are some extension 

for consideration in future research. 

In this study, we propose a method to solve 

the lost sales inventory problem and finite planning 

horizon. From the analysis and numerical example, 

we can conclude that the minimum total cost of the 

finite planning horizon method is always greater or 

equal to the infinite planning horizon method. 

Future research can be done to consider multi items 

lost sales in finite planning horizon. 

6. CONCLUSIONS AND FUTURE WORK 
 

This paper describes a new optimization algorithm 

based on soccer game analogy. The method is 

considered for continuous and discrete problems. 

The performance of the algorithm is assessed using 

eight benchmark problems for continuous 

unconstrained problems, continuous constrained 

problem and discrete problems. The results for the 

continuous unconstrained problems are compared 

with PSO 1, PSO 2 and GA while the result of the 

continuous constrained problems and the discrete 

problem are compared with the researches in 

existing literature. The computational result has 

shown that the algorithm performs better than 

existing researches as well as providing evidence 

of better diversification mechanism in the 

continuous problems. This study reveals that the 

SGO is potentially a powerful optimization 

technique and can be applied for other problems as 

well. For future research, we will consider dynamic 

environment and information sharing mechanism 

among the players.  

 

Appendix A: 
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Figure A.1. Search area when only the previous player’s 

position and the ball position are considered 
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Appendix B: 

For area II, there are two extreme search spaces. 

The maximum search space (  ) occurs when  

      
 

     and        
    and the minimum 

search space (0) occurs when       
 

       
 . The 

maximum search space does not provide any clue 

to do the search, so we only consider the minimum 

search space.  
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