THE INFLUENCE OF ARTIFICIAL INTELLIGENCE CAPABILITIES ON EMPLOYEES’ PRODUCTIVITY AMONG INFORMATION TECHNOLOGY STAFF IN JAKARTA

Authors

  • Sylvia Diana Purba Atma Jaya Catholic University of Indonesia
  • Pedro Lybernando Cornellius Atma Jaya Catholic University of Indonesia

DOI:

https://doi.org/10.25170/balance.v22i2.7398

Keywords:

AI Tangible Resources, AI Intangible Resources, AI Human Skill, Employees Productivity

Abstract

This study aims to analyze the influence of AI tangible resources, AI intangible resources, and AI human skills on employee productivity. The research was conducted on 52 employees’ productivity in the information technology (IT) sector who have already implemented  AI in their daily tasks. The data were collected through social media platforms such as WhatsApp, X (formerly Twitter), and Instragram. The data were analyzed using SPSS version 29. The results indicate that AI tangible resources have a significant positive effect on employees’ productivity in the IT sector. Likewise, AI intangible resources also have significant positive effects. However, AI human skills have a significant negative effect on employees’ productivity. Overall, AI tangible resources, AI intangible resources, and AI human skills have a significant simultaneous effect on employees’ productivity

References

AI at Work: Friend and foe. (2024, June 26). https://www.bcg.com/press/26june2024-ai-at-work-survey-friend-and-foe?utm_source=chatgpt.com

Amin, R. (n.d.). Implementing machine learning in supply chain management. https://doi.org/10.13140/RG.2.2.10505.04966

Anjani, S. H. (2019, December 4). Micdash FEB UGM kaji dampak artificial intelligence terhadap pasar tenaga kerja - Fakultas Ekonomika dan Bisnis Universitas Gadjah Mada. https://feb.ugm.ac.id/id/berita/5154-micdash-feb-ugm-kaji-dampak-artificial-intelligence-terhadap-pasar-tenaga-kerja?utm_source=chatgpt.com

Asimiyu, Z. (n.d.). Optimizing logistics and transportation using ai-enabled SAP supply chain solutions. https://www.researchgate.net/publication/388629035

Barney. (1991). (n.d.). Firm resources and sustained competitive advantage.

Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. MIS Quarterly: Management Information Systems, 44(1), 1–17. https://doi.org/10.25300/MISQ/2020/13304

Berita Kini - Adopsi AI industri pertambangan jadikan Indonesia top global. (2025, April 24). https://portal.komdigi.go.id/kanal-publik/berita-kini/9285?utm_source=chatgpt.com

Brynjolfsson, E., Li, D., Raymond, L. R., Acemoglu, D., Autor, D., Axelrod, A., Dillon, E., Enam, Z., Garicano, L., Frankel, A., Manning, S., Mullainathan, S., Pierson, E., Stern, S., Rambachan, A., Reenen, J. Van, Sadun, R., Shaw, K., & Stanton, C. (2023). We are grateful to. http://www.nber.org/papers/w31161

Bughin, J., Brussels, |, Seong, J., Shanghai, |, Manyika, J., Francisco, S., Chui, M., Joshi, R., & Stockholm, |. (n.d.). Notes from the AI frontier modeling the impact of ai on the world economy. www.mckinsey.com/mgi.

Carnes, C. M., Chirico, F., Hitt, M. A., Huh, D. W., & Pisano, V. (2017). Resource orchestration for innovation: Structuring and bundling resources in growth- and maturity-stage firms. Long Range Planning, 50(4), 472–486. https://doi.org/10.1016/j.lrp.2016.07.003

Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. (2023). The economic potential of generative AI the next productivity frontier

Davenport, T. H., & Ronanki, R. (2018, February). Artificial intelligence for the real world. managementissues. https://managementissues.com/organisatietools/artificial-intelligence-for-the-real-world/?utm_source=chatgpt.com

Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (n.d.). Artificial intelligence and business value: a literature review. https://doi.org/10.1007/s10796-021-10186-w/Published

Fountaine, T., Mccarthy, B., & Saleh, T. (n.d.). Building the AI-powered organization.

Gao, Y., Liu, S., & Yang, L. (2025). Artificial intelligence and innovation capability: a dynamic capabilities perspective. International Review of Economics and Finance, 98. https://doi.org/10.1016/j.iref.2025.103923

Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: a partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002

Jussupow, E., Spohrer, K., & Heinzl, A. (2022). Identity threats as a reason for resistance to artificial intelligence: Survey study with medical students and professionals. JMIR Formative Research, 6(3). https://doi.org/10.2196/28750

Kassa, B. Y., & Worku, E. K. (2025). The impact of artificial intelligence on organizational performance: the Mediating role of employee productivity. Journal of Open Innovation: Technology, Market, and Complexity, 11(1). https://doi.org/10.1016/j.joitmc.2025.100474

Lin, H., Huang, X., Sheng, Y., Tang, N., Lian, H., Zhang, W., Zhao, L., Zhu, H., Chang, P., & Guo, Y. (2024). Intelligent verification tool for surgical information of ophthalmic patients—a study based on artificial intelligence technology. Journal of Patient Safety. https://doi.org/10.1097/PTS.0000000000001295

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information and Management, 58(3). https://doi.org/10.1016/j.im.2021.103434

Noy, S., Zhang, M. W., Agarwal, N., Autor, D., Barros, L., Benheim, T., Finkelstein, A., Horton, J., Jäger, S., Leslie, A., Mejia, J., Noy, I., Noy, L., Partridge, E., Rafkin, C., Rao, A., Roussille, N., Roth, C., Schilbach, F., … Wu, S. (2023). Experimental evidence on the productivity effects of generative artificial intelligence.

Peretz-Andersson, E., Tabares, S., Mikalef, P., & Parida, V. (2024). Artificial intelligence implementation in manufacturing SMEs: a resource orchestration approach. International Journal of Information Management, 77. https://doi.org/10.1016/j.ijinfomgt.2024.102781

PwC 2024 Global AI Jobs Barometer | PwC. (2024, May 21). https://www.pwc.com/gx/en/news-room/press-releases/2024/pwc-2024-global-ai-jobs-barometer.html?utm_source=chatgpt.com

Ransbotham, S., Gerbert, P., Reeves, M., Kiron, D., & Spira, M. (2018, September 17). Artificial intelligence in business gets real. https://sloanreview.mit.edu/projects/artificial-intelligence-in-business-gets-real/?utm_source=chatgpt.com

Ransbotham, S., Khodabandeh, S., Kiron, D., Candelon, F., Chu, M., & LaFountain, B. (2020, October 20). Expanding AI’s impact with organizational learning. https://sloanreview.mit.edu/projects/expanding-ais-impact-with-organizational-learning/

Ransbotham, S., Kiron, D., Candelon, F., Khodabandeh, S., & Chu, M. (2022, October 31). Achieving individual — and organizational — value with AI. https://sloanreview.mit.edu/projects/achieving-individual-and-organizational-value-with-ai/

Saar, D. (2025). The role of AI-driven automation exposure in shaping the productivity effects of european intangible capital investments.

Tatipamula, S. (2025). AI in logistics: Smarter inventory and shipment optimization. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(2), 3352–3373. https://doi.org/10.32628/CSEIT25112813

Sarker, I. H. (2022). AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3(2). https://doi.org/10.1007/s42979-022-01043-x

Singh, S., Solkhe, A., & Gautam, P. (2022). What do we know about employee productivity?: Insights from bibliometric analysis. Journal of Scientometric Research, 11(2), 183–198. https://doi.org/10.5530/jscires.11.2.20

Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. Journal of Business Research, 134, 574–587. https://doi.org/10.1016/j.jbusres.2021.05.009

Treacy, S. (2022). A Roadmap to Artificial intelligence: Navigating core impacts to successfully transform organisations. European Conference on the Impact of Artificial Intelligence and Robotics, 4(1), 85–92. https://doi.org/10.34190/eciair.4.1.923

Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411

Wankhede, A., Somaiya, K. J., Rajvaidya, R., & Bagi, S. (2021). Applications of artificial intelligence and the millennial expectations and outlook towards artificial intelligence. In Academy of Marketing Studies Journal,25(4).

Downloads

Published

2026-02-19