Potensi algoritma berbasis neural network dan turunannya sebagai prediktor kadar PM2,5 dan PM10: Suatu telaah sistematis

Authors

  • Leonardo Alexander Student
  • Robby Soetedjo Student
  • Nikolaus Tobian Universitas Katolik Indonesia Atma Jaya

DOI:

https://doi.org/10.25170/djm.v24i2.3314

Keywords:

kecerdasan buatan, polusi udara, prediksi

Abstract

Pendahuluan: Polusi udara merupakan penyebab utama Penyakit Tidak Menular (PTM) di Asia Tenggara dan telah diidentifikasi sebagai masalah kesehatan global terbesar kedua pada tahun 2016. Strategi prediksi yang efektif sangat penting untuk mengurangi dampak buruknya. Studi ini secara sistematis meninjau penerapan algoritma berbasis Artificial Neural Network (ANN) dalam memprediksi konsentrasi polutan udara, khususnya PM2.5 dan PM10.

Metode: Tinjauan sistematis ini mengikuti pedoman PRISMA. Pencarian sistematis dilakukan pada 4 basis data untuk menemukan studi yang menerapkan model ANN dalam prediksi polusi udara dengan menggunakan data meteorologi dan/atau geografis sebagai input. Ekstraksi data difokuskan pada struktur model, akurasi prediksi, serta perbandingan dengan algoritma kecerdasan buatan lainnya. Model ANN dievaluasi berdasarkan kemampuannya menangani interaksi variabel non-linear yang kompleks, fleksibilitas pada berbagai dataset, dan kinerja prediktif dibandingkan metode lain.

Hasil: Algoritma berbasis ANN secara konsisten menunjukkan performa lebih baik dibandingkan model alternatif dalam memprediksi kadar PM2.5 dan PM10. Kemampuan ANN dalam pembelajaran adaptif serta integrasi berbagai input meningkatkan akurasi prediksi. Beberapa studi melaporkan adanya peningkatan lebih lanjut ketika ANN dikombinasikan dengan metode turunannya.

Simpulan: ANN merupakan alat yang andal dan akurat untuk memprediksi polusi udara serta mendukung kebijakan berbasis bukti dalam pencegahan dan pengelolaan lingkungan. Peran ANN dalam ilmu lingkungan menyoroti inovasi dalam pemodelan prediktif dan membuka peluang integrasi dengan teknologi berkelanjutan.

Downloads

Download data is not yet available.

References

1. Prüss-Ustün A, van Deventer E, Mudu P, Campbell Lendrum D, VIckers C, Ivanov I, et al. Environmental risks and non-communicable diseases. BMJ. 2019;364:l265

2. Chen S, Bloom DE. The macroeconomic burden of noncommunicable diseases associated with air pollution in China. PLoS One. 2019;14(4):e0215663.

3. Fuller R, Rahona E, Fischer S, Caravanos J, Webb D, Kass D, et al. Pollution and non-communicable disease: time to end the neglect. Lancet Planet Health. 2018;2(3):e96–e98.

4. Mo X, Zhang L, Li H, Qu Z. A novel air quality early-warning system based on artificial intelligence. Int J Environ Res Public Health. 2019;16(19):3505.

5. Asadollahfardi G, Mehdinejad M, Pam M, Parisa P, Asadollahfardi R, Farnad M. Predicting carbon monoxide concentrations in the air of Pardis City, Iran, using an artificial neural network. Environ Qual Manag. 2016;26(1):37–49.

6. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

7. Bozdağ A, Dokuz Y, Gökçek ÖB. Spatial prediction of PM10 concentration using machine learning algorithms in Ankara, Turkey. Environ Pollut. 2020;263(Pt A):114635.

8. Hur SK, Oh HR, Ho CH, Kim J, Song CK, Chang LS, et al. Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns. Environ Pollut. 2016;218:1324–33.

9. Kurt A, Gulbagci B, Karaca F, Alagha O. An online air pollution forecasting system using neural networks. Environ Int. 2008;34(5):592–8.

10. Ragosta M, D’Emilio M, Giorgio GA. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network. Environ Monit Assess. 2015;187(5):307.

11. Chellali MR, Abderrahim H, Hamou A, Nebatti A, Janovec J. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers. Environ Sci Pollut Res Int. 2016;23(14):14008–17.

12. Voukantsis D, Karatzas K, Kukkonen J, Räsänen T, Karppinen A, Kolehmainen M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci Total Environ. 2011;409(7):1266–76.

13. Dong L, Li S, Yang J, Shi W, Zhang L. Investigating the performance of satellite-based models in estimating the surface PM2.5 over China. Chemosphere. 2020;256:127051.

14. Lu WZ, Wang WJ. Potential assessment of the ‘support vector machine’ method in forecasting ambient air pollutant trends. Chemosphere. 2005;59(5):693–701.

15. Fernando HJS, Mammarella MC, Gradoni G, Fedele P, Di Marco R, Dimitrova R, et al. Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut. 2012;163:62–7.

16. Li X, Peng L, Yao X, Cui S, Hu Y, You C, et al. Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ Pollut. 2017;231(Pt 1):997–1004.

17. Zhang J, Ding W. Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong. Int J Environ Res Public Health. 2017;14(2):214.

18. Thomas S, Jacko RB. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models. J Air Waste Manag Assoc. 2007;57(4):480–8.

19. Sun G, Hoff SJ, Zelle BC, Nelson MA. Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks. J Air Waste Manag Assoc. 2008;58(12):1571–8.

20. Lu WZ, Wang WJ, Wang XK, Yan SH, Lam JC. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Environ Res. 2004;96(1):79–87.

21. Paschalidou AK, Karakitsios S, Kleanthous S, Kassomenos PA. Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ Sci Pollut Res Int. 2011;18(2):316–27.

22. Dunea D, Pohoata A, Iordache S. Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments. Environ Monit Assess. 2015;187(7):477.

23. de Mattos Neto PSG, Cavalcanti GDC, Madeiro F, Ferreira TAE. An approach to improve the performance of PM forecasters. PLoS One. 2015;10(9):e0138507.

24. Carnevale C, Finzi G, Pisoni E, Singh V, Volta M. An integrated air quality forecast system for a metropolitan area. J Environ Monit. 2011;13(12):3437–44.

25. Zhou Y, Chang F, Chang L, Kao IF, Wang Y. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod. 2019;209:134–45.

26. Zhang K. Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: a case study of Huaihai Economic Zone. J Clean Prod. 2020;277:123231.

27. Kaur M, Singh D, Jabarulla MY, Chahar V, Kang J, Lee HN. Computational deep air quality prediction techniques: a systematic review. Artif Intell Rev. 2023;56:1–46.

Published

2025-08-31

How to Cite

1.
Alexander L, Soetedjo R, Tobian N. Potensi algoritma berbasis neural network dan turunannya sebagai prediktor kadar PM2,5 dan PM10: Suatu telaah sistematis. DJM [Internet]. 2025 Aug. 31 [cited 2025 Sep. 28];24(2):167-80. Available from: https://ejournal.atmajaya.ac.id/index.php/damianus/article/view/3314