Penerapan Wavelet Transform pada Analisis Error Pembacaan Internal Measurement Unit dengan Berbagai Variasi Level Cairan pada Tangki Drone Sprayer di PT. Frogs Indonesia Yogyakarta

Authors

  • Jamrud Aminuddin Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jenderal Soedirman, Purwokerto.
  • Nazrul Effendy Program Studi Program Profesi Insinyur, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.
  • Faridah Program Studi Program Profesi Insinyur, Fakultas Teknik, Universitas Gadjah Mada, Yogyakarta.
  • Safira Afrilianti Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jenderal Soedirman, Purwokerto
  • Hasna Farras Tsaabitah Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jenderal Soedirman, Purwokerto
  • Nanda Mardiana Azzahra Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jenderal Soedirman, Purwokerto
  • Reo Yudhono Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jenderal Soedirman, Purwokerto

DOI:

https://doi.org/10.25170/jpk.v2i05.7242

Keywords:

Discrete Wavelet Transform (DWT), Drone sprayer, Internal Measurement Unit (IMU), Sloshing, Wavelet transform

Abstract

Sloshing in the drone sprayer tank can disrupt IMU readings and reduce control stability. This study evaluates the influence of 1–5 liter liquid levels on IMU errors and the effectiveness of DWT using the Daubechies 4 basis with three decomposition levels, where D1 was removed, D2 was processed with soft thresholding, and A3–D3 were retained. The highest errors occurred at 1–2 liters, indicated by higher RMSE values. After denoising, RMSE decreased significantly up to 65.90% on the y-acceleration axis demonstrating that DWT is effective in reducing noise and improving sensor accuracy to maintain drone stability under dynamic conditions.

References

A. A. Ogaili, M. N. Hamzah, A. A. Jaber, and E. Ghane. (2023). “Application of Discrete Wavelet Transform for Condition Monitoring and Fault Detection in Wind Turbine Blades: An Experimental Study,” Engineering and Technology Journal, 42(1),104–116. doi: 10.30684/etj.2023.142023.1516.

A. M. Hasan, K. Samsudin, A. R. Ramli, dan R. S. Azmir. (2020). “Wavelet-based pre-filtering for low cost inertial sensors,” Journal of Applied Sciences, 10(19),2217–2230. doi:10.3923/jas.2010.2217.2230.

Bäuerlein, B., & Avila, K. (2021). Phase lag predicts nonlinear response maxima in liquid-sloshing experiments. Journal of Fluid Mechanics, 925, A22.

C. Widiasari and R. S. A. D. Este. (2020) “Rancang Bangun Drone Quadcopter Tanpa Awak Penyiram Pupuk Tanaman”, Jurnal Elektro dan Mesin Terapan, 6(2),81-90).

Engelsman, D., & Klein, I. (2022). Data-driven denoising of stationary accelerometer signals. arXiv preprint arXiv:2206.05937.

E. B. Lewi, I. Wijayanto, and R. Patmasari. (2021). “Studi Penggunaan Tapis Wavelet untuk Penghilangan Derau Sinyal Sensor Unit Pengukuran Inersia pada Sistem Pengenalan Postur,” e-Proceeding of Engineering (pp. 292-298). Bandung : Universitas Telkom.

H. Alaeiyan, M. R. Mosavi, dan A. Ayatollahi, “Hybrid noise removal to improve the accuracy of inertial sensors using a lifting wavelet transform optimized by a genetic algorithm. (2023).” Alexandria Engineering Journal, 80(2),326-341. doi:10.1016/j.aej.2023.08.069.

8.

I. Daubechies. (1990). “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory, 36(5),961–1005.

K. Hariyanto, E. Poerwanto, and P. N. Santoso. (2023) “Analisis Efektifitas Drone pada Proses Pemupukan Cair untuk Meningkatkan Produktivitas Tanaman Pertanian Padi Organik”, Jurnal ITDA , 4(2), 105-111.

Mehra, Mani, V. K. Mehra, and M. Ahmad. Wavelets theory and its applications. Springer Singapore, 2018.

R. A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications. Cambridge, UK: Cambridge Univ. Press, 2005.

S. Ahmed, H. Xin, M. Faheem, and B. Qiu .(2022) “Stability Analysis of a Sprayer UAV with a Liquid Tank with Different Outer Shapes and Inner Structures”, Agriculture (Switzerland), 12(3), 379 . doi: 10.3390/agriculture12030379.

S. Mallat . (1989). “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., 11(7),674–693.

U. Jantontapo, P. Minyong, S. Deewanichsakul, P. Chotikunnan, R. Chotikunnan, dan N. Thongpance. (2025). “Effect of Liquid Height on Sloshing Dynamics in Cylindrical Containers Using H∞H_inftyH∞ Control with Smooth Velocity Input,” J. Robotics and Control, 6(3),1163-1174. doi:10.18196/jrc.v6i3.26361.

Z. A. Rerung, E. Sofyan, and F. Setiawan. (2020). “Analisis Kestabilan Statik dan Dinamik pada Pesawat LSU-05 NG (Lapan Surveillance UAV 05 New Generation) dengan Menggunakan Perangkat Lunak XFLR5,” Teknika STTKD : Jurnal Teknik, Elektronik, Engine, 6(2), 76-83.

Z. S. Roviyan and Mashoedah. (2024) “Development of Training KIT for Flying Wings UAV Robot Flight Controller as A Robotics Course Learning Media”, Journal of Electronicsand Education, 2(1), 29-42.

Downloads

Published

2025-11-26