Pemanfaatan Analisis Sentimen Youtube untuk Prediksi Harga Saham: Studi pada Investor Retail Indonesia

Penulis

  • Christophorus Bintang Saputra Institut Teknologi Bandung
  • Deddy Priatmodjo Koesrindartoto Institut Teknologi Bandung

DOI:

https://doi.org/10.25170/jm.v21i1.5184

Kata Kunci:

LSTM, Bi-LSTM, machine learning, stock, sentiment

Abstrak

Lonjakan partisipasi investor ritel dalam pasar saham Indonesia seiring dengan meningkatnya jumlah platform media sosial sebagai sumber informasi terkait saham. Khususnya di YouTube, semakin banyak pencipta konten yang menyebarkan wawasan tentang saham, termasuk aksi korporasi yang relevan. Penelitian ini bertujuan untuk memanfaatkan data sentimen yang diekstraksi dari video YouTube tertentu untuk memprediksi harga penutupan saham khususnya selama aksi korporasi, dengan menggunakan model Long Short-Term Memory (LSTM) dan Bidirectional LSTM (Bi-LSTM).

 

Studi ini tidak hanya fokus pada penggunaan sentimen dari video YouTube sebagai variabel prediktif, tetapi juga meliputi analisis tambahan yang melibatkan berbagai algoritma klasifikasi untuk meningkatkan akurasi prediksi. Hasil penelitian menunjukkan bahwa sementara sentimen dari YouTube merupakan variabel yang dapat digunakan untuk prediksi, model Bi-LSTM lebih unggul daripada LSTM dalam memprediksi harga saham seputar tanggal aksi korporasi. Selain itu, integrasi algoritma klasifikasi menunjukkan potensi untuk meningkatkan prediksi, menunjukkan kemungkinan peningkatan skor akurasi ketika diintegrasikan ke dalam model prediksi.

 

Penelitian ini memberikan wawasan tentang efektivitas analisis sentimen dari konten YouTube dalam memprediksi harga saham selama aksi korporasi, menyoroti potensi nilai penggunaan model Bi-LSTM dan dampak positif integrasi algoritma klasifikasi untuk meningkatkan akurasi prediksi. Temuan ini memiliki signifikansi bagi investor ritel Indonesia yang mencari alat pengambilan keputusan yang lebih baik dalam lanskap pasar saham yang dinamis.

Referensi

Ahmad, Ibrahim, Said., et al. 2020. Movie Revenue Prediciton Based on Purchase Intention Mining Using Youtube Traiiler Reviews. Information Processing & Management, 57.

Amrani, Yassine., et al/ 2018. Random Forest and Support Vector Machine based Hybrid Approach to Sentiment Analysis. Procedia Computer Science, 127.

Bouktif, Salah, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. 2018.Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 11 (7): 1636.

Breiman L. Random forests. Machine learning. 2001 Oct 1;45(1):5-32

Chakma, Kakon., Ruma, Umama Begum., Riya, Susmita Das. 2022. YouTube as an information source of floating agriculture: analysis of Bengali language contents quality and viewers’ interaction. Heliyon, vol 8.

Chen, H., De, P., Hu, Y., & Hwang, B. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367–1403.

Daniel, Mariana., Neves, Rui, Ferreira., Horta, Nuno. 2017. Company event popularity for financial markets using Twitter and sentiment analysis. Expert Systems With Application, 111-124.

Enke,D., Mehdiyev, N. 2013. Stock market prediction using a combination of stepwise regression analysis, differential evolution-based fuzzy clustering, and a fuzzy inference neural network. Intelligent Automation & Soft Computing, 636-648.

Fama, E. (1970) Efficient Capital Market: A Review of Theory and Empirical Work. Journal of Finance, 25, 382-417.

Guo, Q., Lei, S., Ye, Q., Fang, Z. 2021. MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price.

Gocken, Mustafa., et al. 2016. Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert System with Application, 320-331.

Hochreiter, S., Schmidhuber, J. 1997. Long-short-term memory. Neural Computation,9(8), 1735-1780.

Jing, Nan., Wu, Zhao., Wang, Hefei., 2021. A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert System with Applications, 178.

K. Chen, Y. Zhou, F. Dai. 2015. A LSTM-based method for stock returns prediction: A case study of China stock market. Proceedings of the IEEE International Conference on Big Data, IEEE Big Data 2015 (2015), pp. 2823-2824

Kim, Ha, Young., Won, Chang, Hyun. 2018. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type model. Expert System with Application, 25-37.

Koto, Fajri., Rahmaningtyas, Gemala Y., 2017. InSet Lexicon: Evaluation of Word List for Indonesian Sentiment Analysis in Microblogs. International Conference on Asian Language Processing, Singapore.

Lai, C. Y., Chen, R. C., & Caraka, R. E. (2019). Prediction stock price based on different index factors using LSTM. In Proceedings of the International Conference on Machine Learning and Cybernetics, 2019-July (pp. 1–6).

Li, Youru., Zhu, Zhenfeng., Kong, Deqian., Han, Huan., Zhao, Yao., 2019. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems, 181.

Li, Yelin., et al. 2020. The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning. International Journal of Forecasting, 36.

Li, Xiadong., Wu, Pangjing., Wang, Wenpeng. 2020. Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing & Management, Vol 57.

Meyer, Eva, Andrea., Sandnerr, Phillip., Cloutier, Bernard., Welpe, Isabell, M. 2023. High on Bitcoin: Evidence of emotional contagion in the YouTube crypto influencer space. Journal of Business Research, vol.164.

Moghar, Adil., Hamiche, Mhamed. 2020. Stock Market Prediction Using LSTM Recurrent Neural Network. Procedia Computer Science, 170.

Pacella, M., & Papadia, G. (2021). Evaluation of deep learning with long short-term memory networks for time series forecasting in supply chain management. Procedia CIRP, 99, 604–609.

Persio, L, Di., Honchar, O. 2017. Analysis of recurrent neural networks for short-term energy load forecasting. International Conference on Computer and Information Science,1-6.

Peterson, R.L. (2007). Affect and Financial Decision-making: How Neuroscience can Inform Market Participants. Journal of Behavioral Finance, 8, 70-78.

Rather, Akhter Mohiuddin., 2021. LSTM-based Deep Learning Model for Stock Prediciton and Predictive Optimization Model. EURO Journal on Decision Processes, Vol. 9.

R. Genuer, “Forêts aléatoires : aspect théoriques, sélection de variables et applications,” Thèse de Doctorat Mathématiques, Université de Paris-Sud XI, 2010.

Saud, Arjun, Singh., Shakya, Subarna. 2020. Analysis of look back period for stock price prediction with RNN variants: A case study on banking sector of NEPSE. Procedia Computer Science, 788 – 798.

S. Siami-Namini, N. Tavakoli, A. Siami Namin. 2018. A comparison of ARIMA and LSTM in forecasting time series Proceedings of the 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018 (2018), pp. 1394-1401

Souza, Tharsis, T.P., Aste, Tomaso. 2019. Predicting future stock market structure by combining social and financial network information. Physica A, 535.

Sprenger, T., Tumasjan, A., Sandner, P., & Welpe, I. 2014. Tweets and trades: The Information content of stock microblogs. European Financial Management,20(5), 926-957.

W.F.M.D. Bondt, R. Thaler, Does the stock market overreact? J. Finance 40 (3) (1985) 793–805

Witten, Ian H., and Eibe Frank. “Data mining: practical machine learning tools and techniques,” Morgan Kaufmann, pp. 1-560, Jun. 2005.

Yasmina, Douiji., Hajar, Mousannif., Hassan, Al Moatassime. 2016. Using YouTube comments for text-based emotion recognition. Procedia Computer Science, 292 – 299.

Zhang, Yin., Jin, Rong., Zhou, Zhi-Hua. 2010. Understanding bag-of-words model: A statistical framework. International Journal of Machine Learning and Cybernetics,43-52.

Diterbitkan

2024-07-03
Abstract views: 297 | PDF downloads: 658