Adopsi Kecerdasan Buatan (AI) dalam Industri Maritim: Peluang, Tantangan, dan Implikasinya terhadap Efisiensi Operasional

Penulis

  • Marsellinus Bachtiar Atma Jaya Catholic University of Indonesia

Kata Kunci:

Kecerdasan Buatan, Efisiensi Operasional, Industri Maritim, Navigasi, Transformasi Digital

Abstrak

Pada penulisan ini adopsi kecerdasan buatan (Artificial Intelligence/AI) dalam industri maritim Indonesia, dengan fokus pada efisiensi operasional pelabuhan. Dengan menggunakan pendekatan kajian literatur dan analisis kasus, penelitian ini mengidentifikasi peta proses bisnis pelabuhan, pemangku kepentingan, serta sistem digital yang digunakan, seperti INAPORTNET, CEISA, TOS, VMS, Auto Gate, dan STID. Studi ini mengevaluasi kesiapan adopsi AI di Pelabuhan Tanjung Priok berdasarkan indikator seperti infrastruktur teknologi, automasi operasional, integrasi sistem, kompetensi SDM, efisiensi operasional, dan dampak lingkungan. Hasil kajian menunjukkan bahwa meskipun terdapat inisiatif digitalisasi yang signifikan, penerapan AI masih terbatas pada tahap awal. Peluang pemanfaatan AI meliputi peningkatan produktivitas, keamanan, dan keberlanjutan, sementara tantangan utamanya mencakup infrastruktur digital, integrasi sistem, serta keterbatasan regulasi dan SDM. Tulisan ini menyimpulkan bahwa strategi bertahap dan kolaboratif antara pemerintah, operator pelabuhan, dan pelaku industri diperlukan untuk mempercepat transformasi digital sektor maritim berbasis AI.

Referensi

DAFTAR PUSTAKA

[1] World Economic Forum, Digital transformation initiative: Unlocking $1.5 trillion for the maritime industry, 2017. [Online]. Available: https://reports.weforum.org/digital-transformation/maritime/

[2] S. Safuan, A. Syafira, “Artificial Intelligence in Indonesian Ports: Opportunities and Challenges,” Transactions on Maritime Science, vol. 13, no. 2, pp. 1–12, 2024. doi: 10.7225/toms.v13.n02.w0

[3] BeritaTrans, “Digitalisasi Tanjung Priok, Pengawasan Kapal & Barang Gunakan SIVERA dan SITAMPAN,” BeritaTrans.com, 2022.

[4] Pelindo, Laporan Tahunan Pelindo 2023, PT Pelabuhan Indonesia (Persero), 2023.

[5] Freightsight, “Tanjung Priok Terminal Booking System Trials 2023,” Freightsight.com, 2023.

[6] Maritime Club Indonesia, “Container Port Performance Index 2024,” Maritime Insights, 2024.

[7] Z. Zhang, Y. Wang, dan L. Chen, “Recent Advances in Artificial Intelligence Sensors,” Advanced Sensor Research, vol. 2, no. 1, pp. 1–15, 2023. [Online]. Tersedia: https://onlinelibrary.wiley.com/doi/full/10.1002/adsr.202200072

[8] S. Liu, M. Zhao, dan H. Li, “Integration of Artificial Intelligence (AI) with Sensor Networks,” Journal of King Saud University – Computer and Information Sciences, vol. 35, no. 4, pp. 567–576, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157823004469

[9] J. Lee dan J. Hu, “Smart Port Operations and AI-Driven Automation,” International Journal of Maritime Engineering and Technology, vol. 10, no. 3, pp. 35–48, 2022.

[10] T. Notteboom, T. Pallis, dan J.-P. Rodrigue, Port Economics, Management and Policy, 2021. [Online]. Available: https://porteconomicsmanagement.org/

[11] D. Gavalas, M. Kasapakis, dan N. Pantelidis, “Smartening up Ports Digitalization with Artificial Intelligence (AI): A Study of Artificial Intelligence Business Drivers of Smart Port Digitalization,” Journal of Shipping and Trade, vol. 7, no. 1, pp. 1–15, 2022. [Online]. Available: https://jshippingandtrade.springeropen.com/articles/10.1186/s41072-022-00106-9

[12] UNCTAD, Review of Maritime Transport 2022, 2022. [Online]. Available: https://unctad.org/system/files/official-document/rmt2022_en.pdf

[13] A. Smith, B. Johnson, dan C. Lee, “Transforming the Shipping Industry: Integrating AI-Powered Virtual Port Operators for End-To-End Optimization,” Journal of Advanced Research in Engineering and Technology, vol. 12, no. 3, pp. 45–60, 2024. [Online]. Available: https://www.researchgate.net/publication/382146367

[14] DNV, Green and Smart Ports, 2023. [Online]. Available: https://www.dnv.com/power-renewables/themes/green-ports/

[15] Y. Chen, L. Zhang, dan X. Wang, “Prediction of Harbour Vessel Emissions Based on Machine Learning,” Transportation Research Part D: Transport and Environment, vol. 117, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361920924001718

[16] International Maritime Organization (IMO), “IMO’s Work to Cut GHG Emissions from Ships,” 2023. [Online]. Available: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx

Diterbitkan

2025-05-15

Cara Mengutip

Adopsi Kecerdasan Buatan (AI) dalam Industri Maritim: Peluang, Tantangan, dan Implikasinya terhadap Efisiensi Operasional. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(1). https://doi.org/10.25170/cylinder.v11i1.6654

Terbitan

Bagian

Articles
Abstract views: 0 | : 0

Cara Mengutip

Adopsi Kecerdasan Buatan (AI) dalam Industri Maritim: Peluang, Tantangan, dan Implikasinya terhadap Efisiensi Operasional. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(1). https://doi.org/10.25170/cylinder.v11i1.6654