Perilaku Termal Baterai Kendaraan Listrik pada Siklus Mengemudi NEDC dan WLTP: Studi Simulasi Menggunakan GT-Suite

Penulis

  • Yosua Setiawan Lecturer
  • Mohd Farid bin Muhamad Said
  • Adrian Sutjiadi

DOI:

https://doi.org/10.25170/cylinder.v11i1.6678

Kata Kunci:

Konversi, Kendaraan Listrik, GT-Suite, Simulasi

Abstrak

Penelitian ini menganalisis perilaku termal dari paket baterai lithium iron phosphate (LiFePO₄) pada kendaraan listrik hasil konversi dengan menggunakan perangkat lunak simulasi GT-Suite. Kendaraan dasar yang digunakan adalah Toyota Avanza dengan mesin 1.3 liter yang dikonversi menjadi kendaraan listrik, dilengkapi motor AC sinkron berdaya puncak 60 kW dan paket baterai sebesar 268,8 V dan 40,32 kWh. Simulasi dilakukan berdasarkan dua siklus pengujian standar, yaitu New European Driving Cycle (NEDC) dan Worldwide Harmonised Light Vehicles Test Procedure (WLTP), baik dalam kondisi tanpa sistem pendingin maupun dengan sistem pendingin pasif. Hasil menunjukkan bahwa suhu maksimum baterai mencapai 45,3°C (NEDC) dan 71,6°C (WLTP) tanpa pendinginan, yang kemudian menurun menjadi 36,6°C dan 48,0°C dengan pendinginan pasif. Peningkatan suhu terutama terjadi saat akselerasi cepat dan laju kendaraan tinggi, menunjukkan bahwa arus pelepasan memiliki pengaruh signifikan terhadap pemanasan baterai. Temuan ini menegaskan pentingnya sistem manajemen termal dalam konversi kendaraan listrik serta efektivitas strategi pendinginan pasif. Penelitian lanjutan direkomendasikan untuk validasi eksperimental dan pengendalian arus melalui sistem manajemen baterai (BMS) guna meningkatkan keselamatan dan masa pakai baterai.

Referensi

[1] G. Liobikienė and M. Butkus, "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Article vol. 106, pp. 298-309, 2017, doi: 10.1016/j.renene.2017.01.036.

[2] R. Watts, A. Ghosh, and J. Hinshelwood, "Exploring the Potential for Electric Retrofit Regulations and an Accreditation Scheme for the UK," Electronics, vol. 10, no. 24, doi: 10.3390/electronics10243110.

[3] L. Ianniciello, P. H. Biwolé, and P. Achard, "Electric vehicles batteries thermal management systems employing phase change materials," Journal of Power Sources, vol. 378, pp. 383-403, 2018/02/28/ 2018, doi: https://doi.org/10.1016/j.jpowsour.2017.12.071.

[4] E. Ferrero, S. Alessandrini, and A. Balanzino, "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, vol. 169, pp. 450-459, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.apenergy.2016.01.098.

[5] F. Hou et al., "Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles," Journal of Cleaner Production, vol. 289, p. 125137, 2021/03/20/ 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125137.

[6] K. G. Logan, J. D. Nelson, C. Brand, and A. Hastings, "Phasing in electric vehicles: Does policy focusing on operating emission achieve net zero emissions reduction objectives?," Transportation Research Part A: Policy and Practice, vol. 152, pp. 100-114, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.tra.2021.08.001.

[7] D. Pedrosa, V. Monteiro, H. Goncalves, J. S. Martins, and J. L. Afonso, "A Case Study on the Conversion of an Internal Combustion Engine Vehicle into an Electric Vehicle," in 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), 27-30 Oct. 2014 2014, pp. 1-5, doi: 10.1109/VPPC.2014.7006994.

[8] M. D. Santis and F. Regis, "Modeling, simulation, and techno-economic analysis of a retrofitted electric vehicle," in 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 7-10 Sept. 2021 2021, pp. 1-6, doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584594.

[9] K. Muhammad Usman et al., Comparative Analysis of Experimental and Simulated Performance and Emissions of Compression Ignition Engine Using Biodiesel Blends. 2018.

[10] L. Wang, L. Wang, Y. Yue, and Y. Zhang, "Research on Thermal Management System of Lithium Iron Phosphate Battery Based on Water Cooling System," 2018, pp. 341-349.

[11] N. Xavier, Calculating the Aerodynamic Drag Coefficient of a Toyota Avanza Car CAD Model using CFD Analysis. 2023, pp. 1-5.

Diterbitkan

2025-05-07

Cara Mengutip

Perilaku Termal Baterai Kendaraan Listrik pada Siklus Mengemudi NEDC dan WLTP: Studi Simulasi Menggunakan GT-Suite. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(1). https://doi.org/10.25170/cylinder.v11i1.6678

Terbitan

Bagian

Articles
Abstract views: 32 | : 19

Cara Mengutip

Perilaku Termal Baterai Kendaraan Listrik pada Siklus Mengemudi NEDC dan WLTP: Studi Simulasi Menggunakan GT-Suite. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(1). https://doi.org/10.25170/cylinder.v11i1.6678