Potensi laktoferin susu sapi sebagai antibiotik tunggal dan kombinasi dengan sefepim terhadap Pseudomonas aeruginosa secara in vitro

Authors

  • Alver Prasetya Atma Jaya Catholic University of Indonesia
  • Sem Samuel Surja FKIK Unika Atma Jaya
  • Zita Arieselia FKIK Unika Atma Jaya

DOI:

https://doi.org/10.25170/djm.v23i2.3824

Keywords:

laktoferin susu sapi, Pseudomonas aeruginosa, antimikroba

Abstract

Pendahuluan: Pseudomonas aeruginosa merupakan salah satu bakteri yang paling sering resistan terhadap berbagai macam antibiotik, sehingga diperlukannya perkembangan antibiotik terbaru. Sefepim merupakan salah satu antibiotik yang sering digunakan dalam pengobatan terhadap bakteri resistan dengan menghambat pembentukan peptidoglikan. Laktoferin susu sapi merupakan glikoprotein pada susu yang memiliki potensi antimikroba dengan mengikat zat besi dan merusak dinding sel. Dengan demikian, terdapat potensi interaksi sinergisme antara sefepim dan laktoferin dalam menghambat Pseudomonas aeruginosa. Dengan demikian, tujuan dari studi ini adalah untuk mengetahui potensi antimikroba laktoferin susu sapi dan potensi interaksinya dengan sefepim dalam menghambat Pseudomonas aeruginosa.

Metode: Sampel bakteri yang digunakan adalah Pseudomonas aeruginosa ATCC 27853. Uji suseptibilitas dilakukan menggunakan uji difusi cakram dan mikrodilusi secara in vitro berdasarkan pedoman Clinical and Laboratory Standards Institute. Sefepim dan cakram kosong digunakan sebagai kontrol. Untuk mengetahui interaksi antara laktoferin susu sapi dengan sefepim dilakukannya uji metode checkerboard.

Hasil: Pada uji difusi cakram dan mikrodilusi, laktoferin susu sapi tidak dapat menghambat pertumbuhan Pseudomonas aeruginosa ATCC 27853. Hal ini sudah dilakukan dengan berbagai macam konsentrasi sampai dengan 0,5 g/ml. Pada uji checkerboard tidak ditemukan interaksi antara sefepim dan laktoferin susu sapi.

Simpulan: Laktoferin susu sapi tidak dapat menghambat pertumbuhan bakteri Pseudomonas aeruginosa ATCC 27853 secara in vitro.

Downloads

Download data is not yet available.

References

Riedel S, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, et al. Jawetz, Melnick & Adelberg’s medical microbiology. 28th ed. New York: McGraw Hill Education; 2019.

US Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.

Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92.

Antimicrobial Resistance Division (AMR), Impact Initiatives and Research Coordination (IRC). Bacterial priority pathogens list 2024: Bacterial pathogens of public health importance, to guide research, development, and strategies to prevent and control antimicrobial resistance. 1st ed. Geneva: World Health Organization; 2024.

Ribeiro ÁC da S, Crozatti MTL, Silva AA da, Macedo RS, Machado AM de O, Silva AT de A. Pseudomonas aeruginosa in the ICU: prevalence, resistance profile, and antimicrobial consumption. Rev Soc Bras Med Trop. 2020;53:e20180498.

Brunton LL, Knollmann BC, Hilal-Dandan R, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. Thirteenth edition. New York: McGraw Hill Medical; 2018. 1419 p.

Vogel HJ. Lactoferrin, a bird’s eye view. Biochem Cell Biol. 2012;90(3):233–44.

Flores-Villaseñor H, Canizalez-Román A, Reyes-Lopez M, Nazmi K, de la Garza M, Zazueta-Beltrán J, et al. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli. Biometals. 2010;23(3):569–78.

Morici P, Florio W, Rizzato C, Ghelardi E, Tavanti A, Rossolini GM, et al. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carba-penem-resistant Klebsiella pneumoniae strains. Eur J Clin Microbiol Infect Dis. 2017;36(10):1739–48.

Moreno-Expósito L, Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Ramos-Torrecillas J, de Luna-Bertos E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018 Feb 15;195:61-4.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests; Approved standard—Twelfth Edition. CLSI document M02-A12. Wayne, PA: CLSI; 2015.

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Tenth Edition. CLSI document M07- A10. Wayne, PA: CLSI; 2015.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: CLSI; 2020.

Lorian V, editor. Antibiotics in laboratory medicine. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.

Perumal S, Mahmud R, Mohamed N. Combination of Epicatechin 3-Gallate from Euphorbia hirta and cefepime promotes potential synergistic eradication action against resistant clinical isolate of Pseudomonas aeruginosa. Evid Based Complement Alternat Med. 2018 Jul 11;2018:5713703.

Al-Mogbel MS, Menezes GA, Elabbasy MT, Alkhulaifi MM, Hossain A, Khan MA. Effect of synergistic action of bovine lactoferrin with antibiotics on drug resistant bacterial pathogens.

Medicina. 2021;57(4):343.

Singh J, Vijayan V, Ahmedi S, Pant P, Manzoor N, Singh TP, et al. Lactosmart: A novel therapeutic molecule for antimicrobial defense. Front Microbiol. 2021;12:672589.

ATCC. Pseudomonas aeruginosa (ATCC® 27853TM): Product Sheet. 2019.

ATCC. Pseudomonas aeruginosa (ATCC® 9027TM): Product Sheet. 2019.

Andrés MT, Viejo-Diaz M, Pérez F, Fierro JF. Antibiotic tolerance induced by lactoferrin in clinical Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2005;49(4):1613–6.

Kamiya H, Ehara T, Matsumoto T, Kamiya H. Inhibitory effects of lactoferrin on biofilm formation in clinical isolates of Pseudomonas aeruginosa. JIC. 2012;18(1):47–52.

O’May CY, Sanderson K, Roddam LF, Kirov SM, Reid DW. Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions. J Med Microbiol. 2009;58(6):765–73.

Rogan MP, Taggart CC, Greene CM, Murphy PG, O’Neill SJ, McElvaney NG. Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis. 2004;190(7):1245–53.

Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol. 2014;68(1):1–12.

Cornelis P, Dingemans J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front Cell Infect Microbiol. 2013 Nov 14;3:75

Jahani S, Shakiba A, Jahani L. The antimicrobial effect of lactoferrin on Gram-negative and Gram-positive bacteria. Int J Infect. 2015;2(3).

Published

2024-08-31

How to Cite

1.
Potensi laktoferin susu sapi sebagai antibiotik tunggal dan kombinasi dengan sefepim terhadap Pseudomonas aeruginosa secara in vitro. DJM [Internet]. 2024 Aug. 31 [cited 2025 Apr. 3];23(2):113-20. Available from: https://ejournal.atmajaya.ac.id/index.php/damianus/article/view/3824

Most read articles by the same author(s)