PERBANDINGAN PENEMPATAN PANEL FOTOVOLTAIK DI ATAS TANAH (GROUND MOUNTING PV) ATAU DI ATAS ATAP (ROOFTOP PV) SEBAGAI IMPLEMENTASI PEMANFAATAN PLTS YANG EFISIEN DI ITERA
DOI:
https://doi.org/10.25170/jurnalelektro.v13i1.1822Keywords:
Photovoltaic, PV, PLTS, Rooftop, GroundmountingAbstract
The use of photovoltaic panels (PV) as the latest material technology to conversion solar energy
into electrical energy, so as it can become a Solar Power Plant (PLTS) which is more continues to grow
in this world, including Institut Teknologi Sumatera (ITERA). As a new campus technology-based in
Lampung Province which also has high solar potential, it is considered appropriate to be able to apply
photovoltaic as the key to the use of renewable energy. The PV panel studied is a comparison with the
placement conditions, specifically placement on the rooftop and on the groundmounting. In order to get
the best efficiency from the comparison of the installed photovoltaic panels, it is necessary to design an
equivalent circuit with a load or no load in designing, as well as making observations for 7 days with
the same conditions. The results show that the placement of PV on the rooftop is 1,129.91 Wh for a
loaded condition and 3,961.91 Wh for a no-load condition, while the placement of PV on the
groundmounting is 1,064.83 Wh for a loaded condition and 3,880.13 for a no-load condition. From
these results, it becomes the basis for the placement of PV as needed before planning the construction
of PLTS.
References
Res. Eng. Sci. Technol. 2(4), 1–4, [Online]. Available: https://www.researchgate.net/publication/275560441_A_Review_on_Solar_Photovoltaics_and_Roof_Top_Application_of_It.
[2] O. Khurshid. 2019. Power Generation by Hybrid Approach Solar PV / battery Power / hydrogen Generation / fuel Cell. 2019 Int. Conf. Electr. Commun. Comput. Eng., no. July, 1–4.
[3] Tampubolon, Agus P. dan Adiatma, Julius C. 2019. Laporan Status Energi Bersih Indonesia: Potensi, Kapasitas Terpasang, dan Rencana Pembangunan Pembangkit Listrik Energi Terbarukan 2019. IESR.
[4] R. V. Zaitsev, M. V. Kirichenko, G. S. Khrypunov, R. P. Miguschenko, and L. V. Zaitseva. 2017. Hybrid Solar Generating Module. IEEE Int. Young Sci. Forum Appl. Phys. Eng., 112–115. [5] S. C. Swarnakar, A. K. Podder, and M. Tariquzzaman. 2019. Solar, Fuel Cell and Battery Based Hybrid Energy Solution for Residential Appliances. 2019 4th Int. Conf. Electr. Inf. Commun. Technol. EICT 2019, no. December. 20–22. doi: 10.1109/EICT48899.2019.9068780.
[6] Y. Rahmawati, S. Sendari, W. S. G. Irianto, T. Matsumoto, D. A. Putra, and D. Arengga. 2019. Simulation of a Solar Power System with Generator Set Backup Source for Hybrid Power System Application. ICEEIE 2019 - Int. Conf. Electr. Electron. Inf. Eng. Emerg. Innov. Technol. Sustain. Futur., 43–47. doi: 10.1109/ICEEIE47180.2019.8981414.
[7] M. Jens et al. 2014. Resistive Power Loss Analysis of PV Modules Made. IEEE J. Photovoltaicsvoltaics, 5(1), 189–194. doi: 10.1109/JPHOTOV.2014.2367868.
[8] W. Obaid, A. K. Hamid, and C. Ghenai. 2019. Hybrid solar/diesel power system design for electric boat with MPPT system. Int. Energy J. 19(1), 37–46.
[9] A. Joshi, A. Khan, and A. Sp. 2019. Comparison of half cut solar cells with standard solar cells. 2019 Adv. Sci. Eng. Technol. Int. Conf. ASET. 1–3. doi: 10.1109/ICASET.2019.8714488.
[10] S. Guo, F. J. Ma, B. Hoex, A. G. Aberle, and M. Peters. 2012. Analysing solar cells by circuit modelling. Energy Procedia, 25, 28–33. doi: 10.1016/j.egypro.2012.07.004.
[11] K. Kananda. 2017. Studi Awal Potensi Energi Surya Wilayah Lampung: Studi Kasus Kampus Institut Teknologi Sumatera (ITERA) Menuju Smart Campus. J.