STUDI KELAYAKAN KONEKTIVITAS DRONE PADA JARINGAN LTE SEBAGAI LAYANAN 5G MASA DEPAN DI DAERAH RURAL

Authors

  • Annisa Sarah Teknik Elektro, Fakultas Teknik, Universitas Katolik Indonesia Atma Jaya
  • Sandra Octaviani BW Teknik Elektro, Fakultas Teknik, Universitas Katolik Indonesia Atma Jaya

Keywords:

eMBB, UAV Communication, 5G, Drone

Abstract

Pemanfaatan drone merupakan salah satu use cases 5G. Penggunaan teknologi seluler seperti LTE untuk komunikasi drone dapat menawarkan koneksi lebih baik dengan cakupan luas. Penelitian ini menguji kelayakan LTE sebagai sarana komunikasi drone, melalui simulasi NS-3. Reference Signal Received Power (RSRP) dan Signal-to-Interference Ratio (SINR) dianalisis dalam dua skenario. Skenario pertama, pengujian dengan menghubungkan satu drone ke satu base station (BS), dan melihat efek perubahan jarak dan ketinggian terhadap RSRP. Skenario kedua, pengujian SINR downlink dan SINR uplink pada ground User Equipment (UE) akibat adanya perubahan jumlah drone dan ketinggian drone. Simulasi dijalankan pada situasi rural, dengan frekuensi 880 MHz (uplink) dan 925 MHz (downlink). Hasil uji konektivitas single-drone memberikan RSRP yang baik hingga jarak yang cukup jauh, yaitu 60% probabilitas untuk memiliki RSRP >-80 dBm, pada jarak 1000 m. Hasil pengujian studi interferensi ialah pada saat drone berada di ketinggian 200 m, SINR drone lebih buruk dibandingkan saat berada di ketinggian 100 m. Hal tersebut dikarenakan drone mendapatkan interferensi dari BS lain dengan probabilitas Line-of-Sight (LOS) yang lebih tinggi. Sedangkan, nilai rata-rata uplink SINR untuk UE yang berada di daratan tidak terpengaruh dengan perubahan jumlah drone.

 

 

      Drones application is one of use cases of future 5G. LTE networks could assist drone to serve better with a wider coverage. We analyze the feasibility of LTE network for drone communication, in a NS-3 simulator. Reference Signal Received Power (RSRP) and Signal-to-Interference (SINR) was analyzed in two scenarios. For Scenario I, we study the connectivity performance between one drone and one base station (BS), and see the impact of changing distance and altitude. For Scenario II, we study the SINR with changing number of drones and its altitude. Different altitude was analyzed to study the drone’s downlink SINR to serving BS, and different number of drones was studied to analyze the performance of average uplink SINR of ground UE. We use rural scenario, 880 MHz for downlink and 925 MHz for uplink. The single-drone connectivity test provides good result, with 60% probability to have RSRP >-80 dBm at 1000 m distance. For the interference study, the downlink SINR on 100 m height is better than 200 m, since higher drone has higher probability of Line-of-Sight (LOS) communication between drone and interfering BS. The average uplink SINR of ground UEs have no significant impact to the number of drone changes.

References

[1] Members of the 5G Infrastructure Association, “5G Vision,” Electron. Publ., p. 16, 2015.
[2] D. Floreano and R. J. Wood, “Science, technology and the future of small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466, 2015.
[3] M. Toh, “Alphabet drones will drop burritos into people’s yards in Australia,” CNN, 2017. [Online]. Available: http://money.cnn.com/2017/10/17/technology/google-alphabet-drone-burrito-delivery/index.html.
[4] Yang Yi, “Chinese e-commerce giant Alibaba’s drones deliver packages to islands,” Xinhua Net, 2017. [Online]. Available: Chinese e-commerce giant Alibaba’s drones deliver packages to islands.
[5] Matt McFarland, “Amazon makes its first drone delivery in the U.K.,” CNN, 2016.
[6] J. Scott and C. Scott, “Drone Delivery Models for Healthcare,” Proc. 50th Hawaii Int. Conf. Syst. Sci., pp. 3297–3304, 2017.
[7] A. Guillen-Perez, R. Sanchez-Iborra, M. D. Cano, J. C. Sanchez-Aarnoutse, and J. Garcia-Haro, “WiFi networks on drones,” Proc. 2016 ITU Kaleidosc. Acad. Conf. ICTs a Sustain. World, ITU WT 2016, no. November, 2017.
[8] C. J. Katila, A. Di Gianni, C. Buratti, and R. Verdone, “Routing Protocols for Video Surveillance Drones in IEEE 802 . 11s Wireless Mesh Networks,” 2017.
[9] T. Vermeulen and S. Pollin, “Analysis of Harmful Interference to and from Aerial IEEE 802.11 Systems,” DroNet, pp. 15–19, 2015.
[10] B. Van Der Bergh, A. Chiumento, and S. Pollin, “LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes,” IEEE Commun. Mag., vol. 54, no. 5, pp. 44–50, 2016.
[11] L. Sundqvist, “Cellular Controlled Drone Experiment: Evaluation of Network Requirements,” p. 25, 2015.
[12] M. Zaki, “Paving the path to 5G: Optimizing commercial LTE networks for drone communication,” Qualcomm. [Online]. Available: https://www.qualcomm.com/news/onq/2016/09/06/paving-path-5g-optimizing-commercial-lte-networks-drone-communication.
[13] N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives,” IEEE Internet Things J., vol. 3, no. 6, pp. 899–922, 2016.
[14] ITU-R, “Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in non-segregated airspace,” Rep. ITU-R, vol. M.2171, 2009.
[15] M. Peng, “System Architecture and Key Technologies for 5G Heterogeneous Cloud\n Radio Access Networks,” IEEE Netw., vol. 29, no. April, pp. 6–14, 2014.
[16] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-Based IoT Platform: A Crowd Surveillance Use Case,” IEEE Commun. Mag., vol. 55, no. 2, pp. 128–134, 2017.
[17] Z. Qiu, X. Chu, C. Calvo-ramirez, C. Briso, and X. Yin, “Low Altitude UAV Air-to-Ground Channel Measurement and Modeling in Semiurban Environments,” vol. 2017, 2017.

Downloads

Published

2018-10-31
Abstract views: 162 | PDF downloads: 132