FORECASTING DATA TRAFFIC DEMAND FOR RURAL AREAS USING MULTI-DIMENSIONAL PARAMETERS
Keywords:
Traffic modeling, Mobile Broadband, Data Traffic, Rural, RemoteAbstract
Deploying network in rural is not attractive for commercial based broadband network providers. However, it is important to provide internet access for villagers since internet may give positive impacts on social development. A failure to forecast traffic demand might lead to a sloppy network design which is inefficient and costly. The mobile traffic demand forecast method needs wider perspectives other than technical records of network providers only. This research introduces a multidimensional model to predict data traffic demand in the future, by combining government spatial planning, demography statistics, and network records. Two different areas were studied and analyzed: Panimbang and Leuwidamar districs, in Banten Province, Indonesia. The main parameter to compare single- and multi-dimensions model is the areal traffic demand. For Panimbang, the areal traffic demand for multi-dimensions model has 24 Mbps/km2 higher, compared to the single-dimension model. For Leuwidamar, the demand for multi-dimension is 10 Mbps/km2 lower, compared to the single-dimension. In case of Panimbang, a pessimistic forecasting might not be a big problem since adding cells in a dense area is not costly, however for the case of Leuwidamar, multi-dimensions models could help to design a more efficient network since the single-dimension model is too optimistic and leads to a high capital investment for providers. This multidimensional model suits best for remote and sparsely distributed users (Leuwidamar). However, it might give no high impact for residential or urban areas (Panimbang).
References
[2] GSMA, ”Today , tomorrow and the future – managing data demand in Asia Pacific” GSM Association, 2014.
[3] A. Jha and D. Saha, “Techno-economics behind Provisioning 4G LTE Mobile Services over Sub 1 GHz Frequency bands,” Commun. Syst. Networks, vol. 10340, no. September, pp. 284–306, 2017.
[4] C. Ovando, J. P e´rez, and A. Moral, “LTE techno-economic assessment: The case of rural areas in Spain,” Telecomm. Policy, vol. 39, no. 3–4, pp. 269–283, 2015.
[5] G. Smail and J. Weijia, “Techno-economic analysis and prediction for the deployment of 5G mobile network,” 2017 20th Conf. Innov. Clouds, Internet Networks, no. 2015, pp. 9–16, 2017.
[6] R. L. Katz, “The economic and social impact of telecommunications output: A theoretical framework and empirical evidence for Spain,” Intereconomics, vol. 44, no. 1, pp. 41–48, 2009.
[7] Dwijayanto, A ”Menkominfo: Proyek Palapa Ring Tuntas Akhir Tahun Ini”, Kompas [Online]. https://ekonomi.kompas.com/read/2018/03/14/133000726/menkominfo– proyek-palapa-ring-tuntas-akhir-tahun-ini
[8] S. Ariyanti and K. Kautsarina, “Kajian Tekno-Ekonomi pada Telehealth di Indonesia,” Bul. Pos dan Telekomun., vol. 15, no. 1, pp. 43–54, 2017.
[9] C. Qi, Z. Zhao, R. Li, and H. Zhang, “Characterizing and Modeling Social Mobile Data Traffic in Cellular Networks,” 2016 IEEE 83rd Veh. Technol. Conf. (VTC Spring), pp. 1–5, 2016.
[10] E. Mucelli, R. Oliveira, A. Carneiro, K. P. Naveen, and C. Sarraute, “Mobile Data Traffic Modeling : Revealing Temporal Facets,” vol. 112, pp. 176–193, 2016.
[11] R.M. Pulselli, et. al, “Computing Urban Mobile Landscapes Through Monitoring Population Density Based on Cell-Phone Chatting,” Int. J. Des. Nat. Ecodynamics, vol. 3, pp. 121–134, 2006.
[12] F. Girardin and A. Gerber, “Towards Estimating the Presence of Visitors from the Aggregate Mobile Phone Network Activity They Generate,” pp. 1–11, 2008.
[13] G. Auer and O. Blume, “EARTH Project D2.3 - Energy efficiency analysis of the reference systems, areas of improvements and target breakdown,” Energy Aware Radio Netw. Technol. (EARTH), INFSO- ICT-247733, ver. 2.0. [Online]. Available http//www.ict-earth.eu/, 2012.
[14] Puslitbang Kemkominfo, “Survey Penggunaan TIK,” Badan Penelit. dan Pengemb. SDM, 2017.
[15] Badan Perencanaan Pembangunan Daerah Provinsi Banten,”RPJPD Provinsi Banten”. [Online].Available: https://bappeda.bantenprov.go.id/id/archive/rpjpd-provinsi-banten/1.html
[16] Badan Perencanaan Pembangunan Daerah, Provinsi Banten, ”RPJMD Provinsi Banten 2017-2022”. [Online]. Available:https://bappeda.bantenprov.go.id/read/rpjmd-2017- 2022/576/Rancangan-RPJMD-2017-2022.html
[17] Badan Perencanaan Pembangunan Daerah, Provinsi Banten, ”Album Peta RTRW Provinsi Banten”. [Online]. Available: https://bappeda.bantenprov.go.id/read/albumpeta/13/Album-Peta-RTRW-Provinsi-Banten.html
[18] Badan Pusat Statistik Provinsi Banten, ”Statistik Daerah Provinsi Banten 2017,” 2017.
[19] Badan Pusat Statistik Kabupaten Lebak, ”Statistik Daerah Kabupaten Lebak 2016,” 2016.
[20] Badan Pusat Statistik Kabupaten Pandeglang, “Statistik Daerah Kabu- paten Pandeglang 2016,” 2016.
[21] Kementrian Komunikasi dan Informatika RI, ”Provider yang Digunakan oleh Petani Tahun 2015” [Online]. Available: https://statistik.kominfo.go.id/
[22] Kementrian Komunikasi dan Informatika RI, ”Provider yang Digunakan oleh Nelayan Tahun 2015” [Online]. Available: https://statistik.kominfo.go.id/
[23] Ericsson, ”South East Asia and Oceania Ericsson Mobility Report,” June, 2016.