Accuracy and Flexibility: Comparison of Conventional and Continuous Methods in Measuring the Coefficient of Linear Expansion of Metals

Authors

  • Stephanus Ivan Goenawan Atma Jaya Catholic University of Indonesia

DOI:

https://doi.org/10.25170/cylinder.v11i2.6951

Keywords:

Coefficient of Linear Expansion, Conventional Method, Discrete Method, Continuous Method, Thermal Expansion

Abstract

This study compares two methods for measuring the coefficient of linear expansion of metals: the Conventional (Discrete) Method and the New (Continuous) Method, focusing on effectiveness, accuracy, and flexibility. Thermal expansion is a crucial phenomenon in materials engineering, and the coefficient of linear expansion is crucial for predicting metal behavior under temperature variations to prevent structural failure. The historically dominant Discrete Method (MD) relies on the linearity assumption and fundamentally requires an initial length (L0) as an absolute reference. This dependence limits flexibility in dynamic experimental situations, where subsequent measurements must reference the original L0. With the development of numerical calculus, the Continuous Method (MC) was developed based on the differential principle, where the coefficient of linear expansion can be calculated from infinitesimal changes in length and temperature without requiring an explicit L0. This approach allows measurements from any point, making it more adaptable for incremental testing. Through numerical simulations on five metals, this study evaluates both methods in two scenarios: an initial measurement of the coefficient of linear expansion and the flexibility of measurements from different temperatures. The results show that both methods produce very close linear expansion coefficient values when measured from the same initial conditions. However, MK proved much more adaptive and efficient, consistently producing valid linear expansion coefficient values without being tied to the original L0. MK can use the length data available at that time as a starting point for subsequent measurements, in contrast to MD, whose results become inconsistent if not referenced to L0. This flexibility of MK is particularly relevant for dynamic material testing and advanced experiments where initial conditions may not always be known or may change. This study presents scientific justification and practical guidance for adopting MK as a more flexible alternative in the thermal characterization of modern materials.

References

1. Ammendola, M., Kedir, N., Ghoshal, A., Slapikas, R., & Wolfe, D. (2025). Mechanical properties of ultra-high temperature ceramic matrix composites (UHTCMCs): A review. Ceramics International. https://doi.org/10.1016/j.ceramint.2025.04.293.

2. Coccia, Mario. (2020). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics. Springer. https://doi.org/10.1007/s11192-020-03464-y.

3. Goenawan, S I. (2025). Pengukuran Koefisien Pemuaian Panjang Logam Dengan Metode Kontinu Kalkulus (MKK) Dan Metode Kontinu Pendekatan (MKP). Paten. Direktorat Jenderal Kekayaan Intelektual (DJKI) Kementerian Hukum dan Hak Asasi Manusia.

4. Gu, T., Qian, X., & Lou, P. (2021). Research on Temperature Compensation Method in Crankshaft Online Measurement System. Applied Sciences, 11(16), 7558. https://doi.org/10.3390/app11167558.

5. Gurmesa, F. D., & Lemu, H. G. (2023). Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing. Metals, 13(3), 526. https://doi.org/10.3390/met13030526.

6. Hassani, S., & Dackermann, U. (2023). A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors, 23(4), 2204. https://doi.org/10.3390/s23042204.

7. Kim, Myungjae., iho Kim., Hyokyeong Kim., Jiwoong Kim. (2024). High-throughput data-driven machine learning prediction of thermal expansion coefficients of high-entropy solid solution carbides. International Journal of Refractory Metals and Hard Materials, 122, August 2024. https://doi.org/10.1016/j.ijrmhm.2024.106738.

8. Kuchler, R., Wawrzynczak, R., Gooth, J., & Galeski, S. (2023). New applications for the world's smallest high-precision capacitance dilatometer and its stress-implementing counterpart. https://doi.org/10.1063/5.0141974.

9. Langreiter, T., & Kahlenberg, V. (2015). TEV—A Program for the Determination of the Thermal Expansion Tensor from Diffraction Data. Crystals, 5(1), 143–153. https://doi.org/10.3390/cryst5010143.

10. Li, Q., Onuki, Y., & Sun, Q. (2021). Tailoring thermal expansion of shape memory alloys through designed reorientation deformation. Acta Materialia, 218, 117201. https://doi.org/10.1016/j.actamat.2021.117201.

11. Li, S., Yue, X., Li, Q., Peng, H., Dong, B., Liu, T., Yang, H., Fan, J., Shu, S., Qiu, F., & Jiang, Q. (2023). Development and applications of aluminum alloys for aerospace industry. Journal of Materials Research and Technology, 27, 944–983. https://doi.org/10.1016/j.jmrt.2023.09.274.

12. Liu, Z.-K., Shang, S.-L., & Wang, Y. (2017). Fundamentals of Thermal Expansion and Thermal Contraction. Materials, 10(4), 410. https://doi.org/10.3390/ma10040410.

13. Mendes, S., Filho, J., Melo, A., & Nunes, L. (2020). Determination of thermal expansion coefficient of a monofilament polyamide fiber using digital image correlation. Polymer Testing, 87, 106540. https://doi.org/10.1016/j.polymertesting.2020.106540.

14. Moradi, A., Ansari, R., Hassanzadeh-Aghdam, M. K., & Jamali, J. (2024). Numerical prediction of thermal conductivity and thermal expansion coefficient of glass fiber-reinforced polymer hybrid composites filled with hollow spheres. Journal of Composite Materials. https://doi.org/10.1177_00219983241235857.

15. Neumeier, J. J., Shvyd’ko, Y. V., & Haskel, D. (2024). Thermal expansion of 4H and 6H SiC from 5 K to 340 K. Journal of Physics and Chemistry of Solids, 187, 111860. https://doi.org/10.1063/5.0091377.

16. Oliva, A., Lugo, J., Gurubel-Gonzalez, R., Centeno, R., Corona, J., & Avilés, F. (2017). Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films, 623, 84–89. https://doi.org/10.1016/j.tsf.2016.12.028.

17. Ortega, Euth Ortiz., Hamed Hosseinian., Ingrid Berenice Aguilar Meza., María José Rosales López., Andrea Rodríguez Vera., Samira Hosseini. (2022). Material Characterization Techniques and Applications. Springer. https://doi.org/10.1007/978-981-16-9569-8.

18. Peng, J., Harsha Gunda, N., Bridges, C. A., Lee, S., Allen Haynes, J., & Shin, D. (2022). A machine learning approach to predict thermal expansion of complex oxides. Computational Materials Science, 210, 111034. https://doi.org/10.1016/j.commatsci.2021.111034.

19. Rajak, Neeraj K., Neha Kondedan., Husna Jan., Muhammed Dilshah., S D Navya., Aswathy Kaipamangalath., Manoj Ramavarma., Chandrahas Bansa., and Deepshikha Jaiswal-Nagar. (2021). Setup of high resolution thermal expansion measurements in closed cycle cryostats using capacitive dilatometers. Journal of Physics Communications. https://doi.org/10.1088/2399-6528/ac3a44.

20. Robertson, S., McClintock, A., Jolley, K., Zhou, H., Davis, S., Wu, H., Liu, C., Doak, S., & Zhou, Z. (2024). Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage. Journal of Microscopy, 295(2), 191–198. https://doi.org/10.1111/jmi.13290.

21. Rodriguez, D., Sim, H. S., Choi, E., Kim, S., Nam, J., Kim, S., & Hong, S. L. (2025). Computational fracture and thermal analysis of glass-ceramics using ReaxFF reactive molecular dynamics simulations. Heliyon, 11(3), e42333. https://doi.org/10.1016/j.heliyon.2025.e42333.

22. Sato, Y., and T. Taira. (2022). Comparative study on the linear thermal expansion coefficient of laser host crystals by first principles calculations. Opt. Mater. Express, 12, 1397–1407. https://doi.org/10.1364/OME.450163.

23. Šafarič, J., Dolšak, B., Klobučar, R., & Ačko, B. (2020). Analysis of thermal contribution to the measurement uncertainty in step gauge calibration. Precision Engineering, 66, 52–61. https://doi.org/10.1016/j.precisioneng.2020.06.012.

24. Shardakov, I. N., & Trufanov, A. N. (2021). Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers, 13(18), 3035. https://doi.org/10.3390/polym13183035.

25. Wong, V., Ezugwu, S., & Fanchini, G. (2024). Contactless Scanning Near-Field Optical Dilatometry Imaging at the Nanoscale. Advanced Materials Interfaces, 11(12), 2300806. https://doi.org/10.1002/admi.202300806.

26. Wu, B., Wang, K., Zeng, T., Weng, W., Xia, Z., Su, Z., & Xie, F. (2025). Experimental Study on Thermal Decomposition Temperature and Thermal Expansion Coefficient of Typical Nonmetallic Materials in Aeroengine Components. Materials, 18(6), 1250. https://doi.org/10.3390/ma18061250.

27. Yang, Z., Ji, W., Yue, W., Jun, Y. Y., & Jing, C. (2025). Research on testing technology for ultra low thermal expansion coefficient. Measurement: Sensors, 38, 101641. https://doi.org/10.1016/j.measen.2024.101641.

28. Youwei Yang., YiMeng Zhu., CuiPing Yu. (2025). Measurement of Coefficient of Thermal Expansion of Metallic Materials from 20 to 150 K by Speckle Interferometry. International Journal of Thermophysics. http://dx.doi.org/10.1007/s10765-025-03591-9.

29. Zhao, L., Tang, J., Zhou, M., & Shen, K. (2022). A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Materials, 37(3), 544–555. https://doi.org/10.1016/S1872-5805(22)60603-6.

30. Zhao, W., Sun, H., & Ma, L. (2023). In-situ Thermal Expansion Measurement of Shape Memory Alloys Under Cyclic Loading. Materials Letters, 333, 133590. https://doi.org/10.1016/j.matlet.2022.133590.

Published

2025-11-18

How to Cite

Accuracy and Flexibility: Comparison of Conventional and Continuous Methods in Measuring the Coefficient of Linear Expansion of Metals. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(2). https://doi.org/10.25170/cylinder.v11i2.6951

Issue

Section

Articles
Abstract views: 84 | : 150

How to Cite

Accuracy and Flexibility: Comparison of Conventional and Continuous Methods in Measuring the Coefficient of Linear Expansion of Metals. (2025). Cylinder : Jurnal Ilmiah Teknik Mesin, 11(2). https://doi.org/10.25170/cylinder.v11i2.6951