Akurasi dan Fleksibilitas: Perbandingan Metode Konvensional dan Kontinu dalam Pengukuran Koefisien Muai Panjang Logam
DOI:
https://doi.org/10.25170/cylinder.v11i2.6951Kata Kunci:
Koefisien Muai Panjang, Metode Konvensional, Metode Diskrit, Metode Kontinu, Pemuaian TermalAbstrak
Penelitian ini membandingkan dua metode pengukuran koefisien muai panjang logam: Metode Konvensional (Diskrit) dan Metode Baru (Kontinu), dengan fokus pada efektivitas, akurasi, dan fleksibilitas. Pemuaian termal adalah fenomena krusial dalam rekayasa material, dan koefisien muai panjang sangat penting untuk memprediksi perilaku logam di bawah variasi suhu guna mencegah kegagalan struktural. Metode Diskrit (MD), yang secara historis dominan, mengandalkan asumsi linieritas dan secara fundamental memerlukan panjang awal (L0) sebagai acuan mutlak. Ketergantungan ini membatasi fleksibilitasnya dalam situasi eksperimental dinamis, di mana setiap pengukuran lanjutan tetap harus merujuk pada L0 asli. Seiring perkembangan kalkulus numerik, Metode Kontinu (MK) dikembangkan berdasarkan prinsip diferensial, di mana koefisien muai panjang dapat dihitung dari perubahan panjang dan suhu yang infinitesimal tanpa memerlukan L0 secara eksplisit. Pendekatan ini memungkinkan pengukuran dari titik mana pun, menjadikannya lebih adaptif untuk pengujian bertahap. Melalui simulasi numerik pada lima jenis logam, penelitian ini mengevaluasi kedua metode dalam dua skenario: pengukuran awal koefisien muai panjang, dan fleksibilitas pengukuran dari suhu berbeda. Hasil menunjukkan bahwa kedua metode menghasilkan nilai koefisien muai Panjang yang sangat mendekati ketika diukur dari kondisi awal yang sama. Namun, MK terbukti jauh lebih adaptif dan efisien, karena secara konsisten menghasilkan nilai koefisien muai panjang yang valid tanpa terikat pada L0 asli. MK dapat menggunakan data panjang yang tersedia pada saat itu sebagai acuan awal untuk pengukuran berikutnya, berbeda dengan MD yang hasilnya menjadi tidak konsisten jika tidak merujuk pada L0. Fleksibilitas MK ini sangat relevan untuk pengujian material dinamis dan eksperimen lanjutan di mana kondisi awal mungkin tidak selalu diketahui atau berubah. Penelitian ini menyajikan justifikasi ilmiah dan panduan praktis untuk mengadopsi MK sebagai alternatif yang lebih fleksibel dalam karakterisasi termal material modern.
Referensi
1. Ammendola, M., Kedir, N., Ghoshal, A., Slapikas, R., & Wolfe, D. (2025). Mechanical properties of ultra-high temperature ceramic matrix composites (UHTCMCs): A review. Ceramics International. https://doi.org/10.1016/j.ceramint.2025.04.293.
2. Coccia, Mario. (2020). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics. Springer. https://doi.org/10.1007/s11192-020-03464-y.
3. Goenawan, S I. (2025). Pengukuran Koefisien Pemuaian Panjang Logam Dengan Metode Kontinu Kalkulus (MKK) Dan Metode Kontinu Pendekatan (MKP). Paten. Direktorat Jenderal Kekayaan Intelektual (DJKI) Kementerian Hukum dan Hak Asasi Manusia.
4. Gu, T., Qian, X., & Lou, P. (2021). Research on Temperature Compensation Method in Crankshaft Online Measurement System. Applied Sciences, 11(16), 7558. https://doi.org/10.3390/app11167558.
5. Gurmesa, F. D., & Lemu, H. G. (2023). Literature Review on Thermomechanical Modelling and Analysis of Residual Stress Effects in Wire Arc Additive Manufacturing. Metals, 13(3), 526. https://doi.org/10.3390/met13030526.
6. Hassani, S., & Dackermann, U. (2023). A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors, 23(4), 2204. https://doi.org/10.3390/s23042204.
7. Kim, Myungjae., iho Kim., Hyokyeong Kim., Jiwoong Kim. (2024). High-throughput data-driven machine learning prediction of thermal expansion coefficients of high-entropy solid solution carbides. International Journal of Refractory Metals and Hard Materials, 122, August 2024. https://doi.org/10.1016/j.ijrmhm.2024.106738.
8. Kuchler, R., Wawrzynczak, R., Gooth, J., & Galeski, S. (2023). New applications for the world's smallest high-precision capacitance dilatometer and its stress-implementing counterpart. https://doi.org/10.1063/5.0141974.
9. Langreiter, T., & Kahlenberg, V. (2015). TEV—A Program for the Determination of the Thermal Expansion Tensor from Diffraction Data. Crystals, 5(1), 143–153. https://doi.org/10.3390/cryst5010143.
10. Li, Q., Onuki, Y., & Sun, Q. (2021). Tailoring thermal expansion of shape memory alloys through designed reorientation deformation. Acta Materialia, 218, 117201. https://doi.org/10.1016/j.actamat.2021.117201.
11. Li, S., Yue, X., Li, Q., Peng, H., Dong, B., Liu, T., Yang, H., Fan, J., Shu, S., Qiu, F., & Jiang, Q. (2023). Development and applications of aluminum alloys for aerospace industry. Journal of Materials Research and Technology, 27, 944–983. https://doi.org/10.1016/j.jmrt.2023.09.274.
12. Liu, Z.-K., Shang, S.-L., & Wang, Y. (2017). Fundamentals of Thermal Expansion and Thermal Contraction. Materials, 10(4), 410. https://doi.org/10.3390/ma10040410.
13. Mendes, S., Filho, J., Melo, A., & Nunes, L. (2020). Determination of thermal expansion coefficient of a monofilament polyamide fiber using digital image correlation. Polymer Testing, 87, 106540. https://doi.org/10.1016/j.polymertesting.2020.106540.
14. Moradi, A., Ansari, R., Hassanzadeh-Aghdam, M. K., & Jamali, J. (2024). Numerical prediction of thermal conductivity and thermal expansion coefficient of glass fiber-reinforced polymer hybrid composites filled with hollow spheres. Journal of Composite Materials. https://doi.org/10.1177_00219983241235857.
15. Neumeier, J. J., Shvyd’ko, Y. V., & Haskel, D. (2024). Thermal expansion of 4H and 6H SiC from 5 K to 340 K. Journal of Physics and Chemistry of Solids, 187, 111860. https://doi.org/10.1063/5.0091377.
16. Oliva, A., Lugo, J., Gurubel-Gonzalez, R., Centeno, R., Corona, J., & Avilés, F. (2017). Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films, 623, 84–89. https://doi.org/10.1016/j.tsf.2016.12.028.
17. Ortega, Euth Ortiz., Hamed Hosseinian., Ingrid Berenice Aguilar Meza., María José Rosales López., Andrea Rodríguez Vera., Samira Hosseini. (2022). Material Characterization Techniques and Applications. Springer. https://doi.org/10.1007/978-981-16-9569-8.
18. Peng, J., Harsha Gunda, N., Bridges, C. A., Lee, S., Allen Haynes, J., & Shin, D. (2022). A machine learning approach to predict thermal expansion of complex oxides. Computational Materials Science, 210, 111034. https://doi.org/10.1016/j.commatsci.2021.111034.
19. Rajak, Neeraj K., Neha Kondedan., Husna Jan., Muhammed Dilshah., S D Navya., Aswathy Kaipamangalath., Manoj Ramavarma., Chandrahas Bansa., and Deepshikha Jaiswal-Nagar. (2021). Setup of high resolution thermal expansion measurements in closed cycle cryostats using capacitive dilatometers. Journal of Physics Communications. https://doi.org/10.1088/2399-6528/ac3a44.
20. Robertson, S., McClintock, A., Jolley, K., Zhou, H., Davis, S., Wu, H., Liu, C., Doak, S., & Zhou, Z. (2024). Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage. Journal of Microscopy, 295(2), 191–198. https://doi.org/10.1111/jmi.13290.
21. Rodriguez, D., Sim, H. S., Choi, E., Kim, S., Nam, J., Kim, S., & Hong, S. L. (2025). Computational fracture and thermal analysis of glass-ceramics using ReaxFF reactive molecular dynamics simulations. Heliyon, 11(3), e42333. https://doi.org/10.1016/j.heliyon.2025.e42333.
22. Sato, Y., and T. Taira. (2022). Comparative study on the linear thermal expansion coefficient of laser host crystals by first principles calculations. Opt. Mater. Express, 12, 1397–1407. https://doi.org/10.1364/OME.450163.
23. Šafarič, J., Dolšak, B., Klobučar, R., & Ačko, B. (2020). Analysis of thermal contribution to the measurement uncertainty in step gauge calibration. Precision Engineering, 66, 52–61. https://doi.org/10.1016/j.precisioneng.2020.06.012.
24. Shardakov, I. N., & Trufanov, A. N. (2021). Identification of the Temperature Dependence of the Thermal Expansion Coefficient of Polymers. Polymers, 13(18), 3035. https://doi.org/10.3390/polym13183035.
25. Wong, V., Ezugwu, S., & Fanchini, G. (2024). Contactless Scanning Near-Field Optical Dilatometry Imaging at the Nanoscale. Advanced Materials Interfaces, 11(12), 2300806. https://doi.org/10.1002/admi.202300806.
26. Wu, B., Wang, K., Zeng, T., Weng, W., Xia, Z., Su, Z., & Xie, F. (2025). Experimental Study on Thermal Decomposition Temperature and Thermal Expansion Coefficient of Typical Nonmetallic Materials in Aeroengine Components. Materials, 18(6), 1250. https://doi.org/10.3390/ma18061250.
27. Yang, Z., Ji, W., Yue, W., Jun, Y. Y., & Jing, C. (2025). Research on testing technology for ultra low thermal expansion coefficient. Measurement: Sensors, 38, 101641. https://doi.org/10.1016/j.measen.2024.101641.
28. Youwei Yang., YiMeng Zhu., CuiPing Yu. (2025). Measurement of Coefficient of Thermal Expansion of Metallic Materials from 20 to 150 K by Speckle Interferometry. International Journal of Thermophysics. http://dx.doi.org/10.1007/s10765-025-03591-9.
29. Zhao, L., Tang, J., Zhou, M., & Shen, K. (2022). A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Materials, 37(3), 544–555. https://doi.org/10.1016/S1872-5805(22)60603-6.
30. Zhao, W., Sun, H., & Ma, L. (2023). In-situ Thermal Expansion Measurement of Shape Memory Alloys Under Cyclic Loading. Materials Letters, 333, 133590. https://doi.org/10.1016/j.matlet.2022.133590.
Unduhan
Diterbitkan
Cara Mengutip
Lisensi
Hak Cipta (c) 2025 Stephanus Ivan Goenawan

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.