Perencanaan Produksi Kantong Sampah Plastik Menggunakan Metode Linear Programming Di PT Kharisma Plastik Indo

Authors

DOI:

https://doi.org/10.25170/metris.v25i01.4696

Keywords:

Aggregate Production Planning, Disaggregation, Forecasting, Linear Regression, Linear Programming, Percentage of Sales Method

Abstract

PT Kharisma Plastik Indo (PT KPI) is a company that produces recycled plastics and cassava-based plastics. The main product produced by PT KPI is trash bags which have 2 variants, namely black and green. Currently, the company is faced with the problem of stacking finished goods in storage. In carrying out the production, the company uses daily targets without looking at historical sales
data. This study aims to estimate the number of trash bag production using the Linear Regression forecasting method, make aggregate production planning using the Linear Programming method, and disaggregate to determine production schedule of each variant with the percentage of sales method. Forecasting demand for trash bag in October 2022 – February 2023 respectively are 10,061 kg, 9,844 kg, 9,627 kg, 9,410 kg and 9,193 kg. The aggregate planning resulted the total production of trash bags in October - December 2022 respectively are 3,999 kg in normal hours, 9,729 kg in normal hours and 115 kg in overtime, and 9,627 kg in normal hours. January – February 2023 in normal hours are 9,410 kg and 9,193 kg. The disaggregation obtained the trash bag
production schedule for October 2022 – February 2023 respectively are 2,131 kg of the black and 1,868 kg of the green, 5,245 kg of the black and 4,599 kg of the green, 5,129 kg of the black and 4,498 kg of the green, 5,014 kg of the black and 4,396 kg of the green, and 4,898 kg of the black and 4,295 kg of the green.

References

Andini & Auristandi. 2016. Peramalan Jumlah Stok Alat Tulis Kantor di UD Achmad Jaya Menggunakan Metode Double Exponential Smoothing. J. Ilm. Teknol. Inf. Asia, 1:1-10.

Chase, Jacobs, & Aquilano. 2006. Operations Management for Competitive Advantage. New York: McGraw-Hill/Irwin.

Eris, P. N., Nohe, D. A., & Wahyuningsih, S. 2014. Peramalan Dengan Metode Smoothing dan Verifikasi Metode Peramalan Dengan Grafik Pengendali Moving Range (MR) (Studi Kasus: Produksi Air Bersih di PDAM Tirta Kencana Samarinda). Jurnal Eksponensial,5(2):1-8.

Febryanti, A. R., & Rani, A. M. 2019. Penerapan Perencanaan Agregat untuk Meminimumkan Biaya Produksi (Studi pada CV. X). J. Manaj. dan Bisnis Performa,16:144–150.

Gaspersz, V. 2014. Production Planning and Inventory Control. Bogor: Gramedia Pustaka

Utama.

Gumilang, Z. C. 2016. Peramalan dan Perencanaan Produksi Kalung Polos Emas Di PT.X Menggunakan Metode Mixed Integer Programming, Tesis. Surabaya: ProgramMagister Bidang Keahlian Manajemen Industri Program Pasca Sarjana Inst. Teknologi Sepuluh

Nopember.

Makridakis, S., Wheelwright, S. C., & Mc.Gee. 2003. Metode dan Aplikasi Peramalan. 1st ed. Jakarta: Binarupa Aksara.

Nurlifa, A & Kusumadewi, S. 2017. Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky. INOVTEK Polbeng - Seri Inform, 2:18.

Savira, M. 2019. Optimisasi Jumlah Produksi Untuk Memaksimalkan Keuntungan Dengan Metode Fuzzy Linear Programming di UD Rezeki. Skripsi. Medan: Univ.Sumatra Utara.

Sawargo dan Mundari. 2016. Perencanaan Produksi Untuk Memenuhi Permintaan Dengan Biaya Yang Optimal. J. Heuristic, 11.

Setiawan, D. A., Wahyuningsih, S., & Goejantoro. 2019. Peramalan Produksi Kelapa Sawit Menggunakan Winter’s dan Pegel’s Exponential Smoothing dengan Pemantauan Tracking Signal. Jambura J. Math, 2:1-14.

Susanti, R. D., Santoso, H. B., & Komari, A. 2019. Perencanaan Agregat pada Industri Pengolahan Kayu Jenis Flooring dengan Pendekatan Heuristic (Sinar Rimba Pasifik Sidoarjo. J. Tek. Ind., 1:121–130.

Yudha, A. 2008. Perencanaan dan Pengendalian Produksi. Surabaya: Graha Ilmu

Downloads

Published

2024-06-19

Issue

Section

Articles
Abstract views: 119 | PDF downloads: 111