Pelatihan Penerapan Metode Pengolahan dan Analisis Data Kuantitatif Hasil Penelitian untuk Peningkatan Ketrampilan Penelitian

Authors

  • Hotma Antoni Hutahaean Program Studi Teknik Industri, Fakultas Biosains, Teknologi dan Inovasi, Universitas Katolik Indonesia Atma Jaya
  • MM Wahyuni Inderawati Program Studi Teknik Industri, Fakultas Biosains, Teknologi dan Inovasi, Universitas Katolik Indonesia Atma Jaya,
  • Agustinus Silalahi Program Studi Teknik Industri, Fakultas Biosains, Teknologi dan Inovasi, Universitas Katolik Indonesia Atma Jaya
  • Stephen Aprius Sutresno Program Studi Sistem Informasi, Fakultas Biosains, Teknologi dan Inovasi, Universitas Katolik Indonesia Atma Jaya

DOI:

https://doi.org/10.25170/charitas.v5i02.7403

Keywords:

SEM, Quantitative Data , Evaluation.

Abstract

One of the most important stages in conducting research is processing research data obtained from the data collection process. However, practical understanding regarding the steps for interpreting results and data processing tricks is still limited among general students. To limit this gap, the service team held a workshop related to processing quantitative research data using a statistical application that can be accessed for free via the internet. This activity was successfully implemented and received a positive response from participants. The workshop focuses on providing knowledge and skills related to the use of applications for data processing and interpretation of results using research data that has been used by resource persons in the past. The evaluation results showed that the majority of participants were able to understand the basic concepts of data, data processing and interpretation of results. The workshop shows that the use of examples of actual research data is very effective in bridging theory and practice in conducting research, especially those related to data processing.

References

1. Rahadi, D.R. (2023). Pengantar Partial Least Square Structural Equation Model (PLS SEM). Lentara Ilmu Madani. Tasikmalaya, Jawa Barat.

2. Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A New Criterion for Assessing Dis-criminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43: 115-135.

3. Hair, J. F., C. Black, W., J. Babin, B. & E. Anderson, R. 2010. Multivariate Data Anal-ysis (7th Edition), Prentice Hall International, London.

4. Hair, J.F., Hollingsworth, C.L.H., Randolph, A.B. & Chong, A.Y.L. (2017). An updated and expanded assessment of PLS-SEM in information systems research, Industrial Management & Data Systems, 117(3): 442-458.

5. Hutahaean, H. A., Silalahi, A., Hidayat, T. P., & Inderawati, M.M.W. (2025). Prioritas Perbaikan Aplikasi M-commerce dengan Importance Performance Matrix Analysis (IPMA). Metris: Jurnal Sains dan Teknologi, 26(01), 23-38.

6. Hutahaean, H.A., Silalahi, A., Hidayat, T. P., Sukwadi, R., Kartawidjaja, M.A. (2024) Persepsi Pengguna Sebagai Dasar Pengembangan Model Usability Aplikasi Mobile Commerce, Metris: Jurnal Sains dan Teknologi, 25: 21-32.

7. Creswell, J. W., dan Creswell, J. D. (2018): Mixed Methods Procedures, Research De-sign: Qualitative, Quantitative, and Mixed Methods Approaches, Sage, Los Angeles.

Downloads

Published

2025-12-16